Advertisement

Fluorescence Spectroscopy of Single-Walled Carbon Nanotubes

  • R.B. Weisman
Part of the NanoScience and Technology book series (NANO)

Abstract

An overview is presented of basic and applied aspects of the fluorescent photoluminescence from single-walled carbon nanotubes (SWNT). This fluorescence was first discovered in aqueous surfactant suspensions of SWNT that had been processed for enrichment in individual, unbundled nanotubes. Spectrofluorimetric measurements of emission intensity as a function of excitation and emission wavelengths revealed a rich pattern of peaks representing distinct (n,m) structural species. Careful analysis allowed each of these peaks to be assigned to a specific semiconducting (n,m) species. This spectral assignment provided a large body of precise optical transition energies for a significant range of tube diameters and chiralities. Important patterns of electronic structure emerged showing the related properties of nanotubes within “families” (sharing the same n-m value) and “tribes” (sharing the same mod(n-m,3) value). The results also allowed construction of an empirical “Kataura plot,” useful for guiding experiments, that gives optical transition energies as a function of nanotube diameter for semiconducting species. In surfactantsuspended samples, optical transition energies are found to depend mildly on nanotube environment. Spectral line shapes reveal the predominant excitonic character of optical excitations in SWNT and provide information on environmental heterogeneity and on exciton dephasing rates. Nanotube fluorescence is quenched by aggregation, chemical derivatization, and by acidification in some aqueous suspensions. Fluorimetry offers a powerful method for determining the (n,m) composition of mixed nanotube samples. Instrumental methods for such fluorimetric analysis are discussed and compared. Finally, the unusual near-infrared emission from SWNT can be exploited to allow selective optical detection and imaging of nanotubes in complex environments. Early results are presented showing how this approach can be used to image the locations of nanotubes inside biological cells.

Keywords

Sodium Dodecylbenzenesulfonate Spectral Assignment Individual Nanotubes Spectral Line Shape Chiral Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Saito, G. Dresselhaus, and M.S. Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial College Press (London), 1998.Google Scholar
  2. 2.
    M.S. Dresselhaus, G. Dresselhaus, and Ph. Avouris, ed., Carbon Nanotubes: Synthesis, Structure, Properties, and Applications, Springer-Verlag (New York), 2001.Google Scholar
  3. 3.
    S. Reich, J. Janina, and C. Thomsen, Carbon Nanotubes: Basic Concepts and Physical Properties, Wiley (New York), 2004.Google Scholar
  4. 4.
    J.W. Mintmire and C.T. White: Phys. Rev. Lett. 81, 2506 (1998)CrossRefGoogle Scholar
  5. 5.
    M. O'Connell, S.M. Bachilo, C.B. Huffman, V. Moore, M.S. Strano, E. Haroz, K. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, and R.E. Smalley: Science 297, 593 (2002)CrossRefPubMedGoogle Scholar
  6. 6.
    M. Kasha: Disc. Faraday Soc. 9, 14 (1950)CrossRefGoogle Scholar
  7. 7.
    Y.-Z. Ma, J. Stenger, J. Zimmerman, S.M. Bachilo, R.E. Smalley, R.B. Weisman, and G.R. Fleming: J. Chem. Phys. 120, 3368 (2004)CrossRefPubMedGoogle Scholar
  8. 8.
    J. Kono, G.N. Ostojic, S. Zaric, M.S. Strano, V.C. Moore, J. Shaver, and R.H. Hauge: Applied Physics A 78, 1093 (2004)CrossRefGoogle Scholar
  9. 9.
    A. Hagen, G. Moos, V. Talalaev, and T. Hertel: Applied Physics A 78, 1137 (2004)CrossRefGoogle Scholar
  10. 10.
    S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, and R.B. Weisman: Science 298, 2361 (2002)CrossRefPubMedGoogle Scholar
  11. 11.
    C.L. Kane and E.J. Mele: Phys. Rev. Lett. 90, 207401/1 (2003)Google Scholar
  12. 12.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie: Applied Physics A 78, 1129 (2004)CrossRefGoogle Scholar
  13. 13.
    C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, and S.G. Louie: Phys. Rev. Lett. 92, 077402/1 (2004)CrossRefGoogle Scholar
  14. 14.
    S. Reich and C. Thomsen: Phys. Rev. B 62, 4273 (2000)CrossRefGoogle Scholar
  15. 15.
    R. Saito, G. Dresselhaus, and M.S. Dresselhaus: Phys. Rev. B 61, 2981 (2000)CrossRefGoogle Scholar
  16. 16.
    S. Lebedkin, F.H. Hennrich, T. Skipa, and M.M. Kappes: J. Phys. Chem. B 107, 1949 (2003)CrossRefGoogle Scholar
  17. 17.
    S. Lebedkin, K. Arnold, F.H. Hennrich, R. Krupke, B. Renker, and M.M. Kappes: New Journal of Physics 5, 140.1 (2003)CrossRefGoogle Scholar
  18. 18.
    H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba: Synth. Met. 103, 2555 (1999)CrossRefGoogle Scholar
  19. 19.
    R.B. Weisman and S.M. Bachilo: Nano Lett. 3, 1235 (2003)CrossRefGoogle Scholar
  20. 20.
    R. Saito, A. Gruneis, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, A. Jorio, L.G. Cancado, M.A. Pimenta, and A.G. Souza Filho: Applied Physics A, 1099 (2004)Google Scholar
  21. 21.
    S.K. Doorn, D.A. Heller, P.W. Barone, M.L. Usrey, and M.S. Strano: Applied Physics A 78, 1155 (2004)Google Scholar
  22. 22.
    J. Lefebvre, Y. Homma, and P. Finnie: Phys. Rev. Lett. 90, 217401/1 (2003)CrossRefGoogle Scholar
  23. 23.
    J. Lefebvre, J.M. Fraser, Y. Homma, and P. Finnie: Applied Physics A 78, 1107 (2004)CrossRefGoogle Scholar
  24. 24.
    J. Lefebvre, J.M. Fraser, P. Finnie, and Y. Homma: Phys. Rev. B 69, 075403–1 (2004)CrossRefGoogle Scholar
  25. 25.
    V.C. Moore, M.S. Strano, E.H. Haroz, R.H. Hauge, and R.E. Smalley: Nano Lett. 3, 1379 (2003)CrossRefGoogle Scholar
  26. 26.
    P. Cherukuri, S.M. Bachilo, S.H. Litovsky, and R.B. Weisman: to be published (2004)Google Scholar
  27. 27.
    A. Hartschuh, H.N. Pedrosa, L. Novotny, and T.D. Krauss: Science 301, 1354 (2003)CrossRefPubMedGoogle Scholar
  28. 28.
    T.G. Pedersen: Phys. Rev. B 67, 073401–1 (2003)CrossRefGoogle Scholar
  29. 29.
    T. Ando: J. Phys. Soc. Jpn. 66, 1066 (1997)CrossRefGoogle Scholar
  30. 30.
    A.G. Souza Filho, A. Jorio, Hafner J.H., C.M. Lieber, R. Saito, M.A. Pimenta, G. Dresselhaus, and M.S. Dresselhaus: Phys. Rev. B 63, 241404–1 (2001)CrossRefGoogle Scholar
  31. 31.
    J.-S. Lauret, C. Voisin, G. Cassabois, P. Roussignol, C. Delalande, A. Filoramo, L. Capes, E. Valentin, and C. Jost: Physica E 21, 1057 (2004)CrossRefGoogle Scholar
  32. 32.
    M.S. Strano, C.B. Huffman, V.C. Moore, M.J. O'Connell, E.H. Haroz, J. Hubbard, M. Miller, K. Rialon, C. Kittrell, S. Ramesh, R.H. Hauge, and R.E. Smalley: J. Phys. Chem. B 107, 6979 (2003)CrossRefGoogle Scholar
  33. 33.
    R.B. Weisman, S.M. Bachilo, and D. Tsyboulski: Applied Physics A 78, 1111 (2004)CrossRefGoogle Scholar
  34. 34.
    M.F. Islam, E. Rojas, D.M. Bergey, A.T. Johnson, and A.G. Yodh: Nano Lett. 3, 269 (2003)CrossRefGoogle Scholar
  35. 35.
    S.M. Bachilo, L. Balzano, J.E. Herrera, F. Pompeo, D.E. Resasco, and R.B. Weisman: J. Am. Chem. Soc. 125, 11186 (2003)CrossRefGoogle Scholar
  36. 36.
    S. Maruyama, Y. Miyauchi, Y. Murakami, and S. Chiashi: New Journal of Physics 5, 149.1 (2003)CrossRefGoogle Scholar
  37. 37.
    Y. Miyauchi, S. Chiashi, Y. Murakami, Y. Hayashida, and S. Maruyama: Chem. Phys. Lett. 387, 198 (2004)CrossRefGoogle Scholar
  38. 38.
    R.B. Weisman: Nature Mater. 2, 569 (2003)CrossRefGoogle Scholar
  39. 39.
    A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, and M.S. Dresselhaus: Phys. Rev. Lett. 86, 1118 (2001)CrossRefPubMedGoogle Scholar
  40. 40.
    P. Cherukuri, S.M. Bachilo, S.H. Litovsky, and R.B. Weisman: J. Am. Chem. Soc. 126, 15638 (2004)PubMedGoogle Scholar
  41. 41.
    J.A. Misewich, Ph. Avouris, R. Martel, J.C. Tsang, S. Heinze, and J. Tersoff: Science 300, 783 (2003)CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • R.B. Weisman

There are no affiliations available

Personalised recommendations