Advertisement

Direct Growth of Single Walled Carbon Nanotubes on Flat Substrates for Nanoscale Electronic Applications

  • Shaoming Huang
  • Jie Liu
Part of the NanoScience and Technology book series (NANO)

Abstract

This chapter describes the growth of single walled carbon nanotubes on suitable substrates that can be directly used for device fabrication. The chapter focuses on the growth of nanotubes using chemical vapor deposition (CVD) methods. The control of diameters and orientation of the produced nanotubes is discussed. More importantly, a new “fast-heating” CVD method that can produce long and well aligned of nanotubes is described in details. The control of location and orientation offered by this method offer a great advantage for device fabrication, representing a significant advance in controlling the structures of nanoscaled materials through synthesis.

Keywords

Chemical Vapor Deposition Single Wall Carbon Device Fabrication Apply Physic Letter Chemical Vapor Deposition Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.J. Tans, M.H. Devoret, H.J. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. Dekker, Nature 386, 474 (1997)CrossRefGoogle Scholar
  2. 2.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001)CrossRefPubMedGoogle Scholar
  3. 3.
    A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Physica E-Low-Dimensional Systems Nanostructures 16, 42 (2003)CrossRefGoogle Scholar
  4. 4.
    P. Avouris, R. Martel, V. Derycke, J. Appenzeller, Physica B-Condensed Matter 323, 6 (2002)CrossRefGoogle Scholar
  5. 5.
    V. Derycke, R. Martel, J. Appenzeller, P. Avouris, Nano Letters 1, 453 (2001)CrossRefGoogle Scholar
  6. 6.
    A. Javey, Q. Wang, A. Ural, Y.M. Li, H.J. Dai, Nano Letters 2, 929 (2002)CrossRefGoogle Scholar
  7. 7.
    A. Javey, H. Kim, M. Brink, Q. Wang, A. Ural, J. Guo, P. McIntyre, P. McEuen, M. Lundstrom, H.J. Dai, Nature Materials 1, 241 (2002)CrossRefPubMedGoogle Scholar
  8. 8.
    J.M. Bonard, H. Kind, T. Stockli, L.A. Nilsson, Solid-State Electronics 45, 893 (2001)CrossRefGoogle Scholar
  9. 9.
    O. Zhou, H. Shimoda, B. Gao, S.J. Oh, L. Fleming, G.Z. Yue, Accounts of Chemical Research 35, 1045 (2002)CrossRefPubMedGoogle Scholar
  10. 10.
    A. Javey, J. Guo, Q. Wang, M. Lundstrom, H.J. Dai, Nature 424, 654 (2003)CrossRefPubMedGoogle Scholar
  11. 11.
    M. Radosavljevic, S. Heinze, J. Tersoff, P. Avouris, Applied Physics Letters 83, 2435 (2003)CrossRefGoogle Scholar
  12. 12.
    W. Kim, A. Javey, O. Vermesh, O. Wang, Y.M. Li, H.J. Dai, Nano Letters 3, 193 (2003)CrossRefGoogle Scholar
  13. 13.
    S. Rosenblatt, Y. Yaish, J. Park, J. Gore, V. Sazonova, P.L. McEuen, Nano Letters 2, 869 (2002)CrossRefGoogle Scholar
  14. 14.
    M. Shim, A. Javey, N.W.S. Kam, H.J. Dai, Journal of the American Chemical Society 123, 11512 (2001)CrossRefPubMedGoogle Scholar
  15. 15.
    T. Someya, J. Small, P. Kim, C. Nuckolls, J.T. Yardley, Nano Letters 3, 877 (2003)CrossRefGoogle Scholar
  16. 16.
    S.J. Wind, J. Appenzeller, P. Avouris, Physical Review Letters 91, Art. No. 058301 (2003)CrossRefPubMedGoogle Scholar
  17. 17.
    M.S. Fuhrer, J. Nygard, L. Shih, M. Forero, Y.G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen, Science 288, 494 (2000)CrossRefPubMedGoogle Scholar
  18. 18.
    K. Besteman, J.O. Lee, F.G.M. Wiertz, H.A. Heering, C. Dekker, Nano Letters 3, 727 (2003)CrossRefGoogle Scholar
  19. 19.
    R.J. Chen, S. Bangsaruntip, K.A. Drouvalakis, N.W.S. Kam, M. Shim, Y.M. Li, W. Kim, P.J. Utz, H.J. Dai, Proceedings of the National Academy of Sciences of the United States of America 100, 4984 (2003)CrossRefPubMedGoogle Scholar
  20. 20.
    J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai, Science 287, 622 (2000)CrossRefPubMedGoogle Scholar
  21. 21.
    J. Kong, M.G. Chapline, H.J. Dai, Advanced Materials 13, 1384 (2001)CrossRefGoogle Scholar
  22. 22.
    J. Li, Y.J. Lu, Q. Ye, M. Cinke, J. Han, M. Meyyappan, Nano Letters 3, 929 (2003)CrossRefGoogle Scholar
  23. 23.
    A. Modi, N. Koratkar, E. Lass, B.Q. Wei, P.M. Ajayan, Nature 424, 171 (2003)CrossRefPubMedGoogle Scholar
  24. 24.
    Q.F. Pengfei, O. Vermesh, M. Grecu, A. Javey, O. Wang, H.J. Dai, S. Peng, K.J. Cho, Nano Letters 3, 347 (2003)CrossRefGoogle Scholar
  25. 25.
    H.C. Choi, W. Kim, D.W. Wang, H.J. Dai, Journal of Physical Chemistry B 106, 12361 (2002)CrossRefGoogle Scholar
  26. 26.
    C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, Journal of Physical Chemistry B 106, 2429 (2002)CrossRefGoogle Scholar
  27. 27.
    L. An, J.M. Owens, L.E. McNeil, J. Liu, Journal of the American Chemical Society 124, 13688 (2002)CrossRefPubMedGoogle Scholar
  28. 28.
    B.C. Liu, S.H. Tang, Z.L. Yu, B.L. Zhang, T. Chen, S.Y. Zhang, Chemical Physics Letters 357, 297 (2002)CrossRefGoogle Scholar
  29. 29.
    M. Zheng, A. Jagota, E.D. Semke, B.A. Diner, R.S. McLean, S.R. Lustig, R.E. Richardson, N.G. Tassi, Nature Materials 2, 338 (2003)CrossRefPubMedGoogle Scholar
  30. 30.
    Z.H. Chen, X. Du, M.H. Du, C.D. Rancken, H.P. Cheng, A.G. Rinzler, Nano Letters 3, 1245 (2003)CrossRefGoogle Scholar
  31. 31.
    D. Chattopadhyay, L. Galeska, F. Papadimitrakopoulos, Journal of the American Chemical Society 125, 3370 (2003)CrossRefPubMedGoogle Scholar
  32. 32.
    R. Krupke, F. Hennrich, H. von Lohneysen, M.M. Kappes, Science 301, 344 (2003)CrossRefPubMedGoogle Scholar
  33. 33.
    E. Joselevich, C.M. Lieber, Nano Letters 2, 1137 (2002)CrossRefGoogle Scholar
  34. 34.
    A. Ural, Y.M. Li, H.J. Dai, Applied Physics Letters 81, 3464 (2002)CrossRefGoogle Scholar
  35. 35.
    S.G. Rao, L. Huang, W. Setyawan, S.H. Hong, Nature 425, 36 (2003)CrossRefPubMedGoogle Scholar
  36. 36.
    D. Mann, A. Javey, J. Kong, Q. Wang, H.J. Dai, Nano Letters 3, 1541 (2003)CrossRefGoogle Scholar
  37. 37.
    P.L. McEuen, M.S. Fuhrer, H.K. Park, Ieee Transactions on Nanotechnology 1, 78 (2002)CrossRefGoogle Scholar
  38. 38.
    S.M. Huang, X.Y. Cai, J. Liu, Journal of the American Chemical Society 125, 5636 (2003)CrossRefPubMedGoogle Scholar
  39. 39.
    S. Huang, B. Maynor, X. Cai, J. Liu, Advanced Materials 15, 1651 (2003)CrossRefGoogle Scholar
  40. 40.
    Y.M. Li, W. Kim, Y.G. Zhang, M. Rolandi, D.W. Wang, H.J. Dai, Journal of Physical Chemistry B 105, 11424 (2001)CrossRefGoogle Scholar
  41. 41.
    E.K. Achim Muller, Hartmut Bogge, Marc Schmidtmann, Christian Beugholt, Paul Kogerler, Canzhong Lu, Angewandte Chemie International Edition 37, 1220 (1998)CrossRefGoogle Scholar
  42. 42.
    E.K. Achim Muller, Hartmut Bogge, Marc Schmidtmann, Frank Peters, Angewandte Chemie International Edition 37, 3360 (1998)Google Scholar
  43. 43.
    S.S. Achim Muller, Syed Qaiser Nazir Shah, Hartmut Bogge, Marc Schmidtmann, Shatarupa Sarkar, Paul Kogerler, Bjorn Hauptfleisch, Alfred X. Trautwein, Volker Schunemann, Angewandte Chemie International Edition 38, 3238 (1999)CrossRefGoogle Scholar
  44. 44.
    S.P. Achim Muller, Samar K. Das, Erich Krickemeyer, Hartmut Bogge, Marc Schmidtmann, Bjorn Hauptfleisch, Angewandte Chemie International Edition 38, 3241 (1999)CrossRefGoogle Scholar
  45. 45.
    S.K.D. Achim Muller, Paul Kogerler, Hartmut Bogge, Marc Schmidtmann, Alfred X. Trautwein, Volker Schunemann, Erich Krickemeyer, Wilhelm Preetz, Angewandte Chemie International Edition 39, 3413 (2000)CrossRefGoogle Scholar
  46. 46.
    S.K.D. Achim Muller, Marina O. Talismanova, Hartmut Bogge, Paul Kogerler, Marc Schmidtmann, Serge S. Talismanov, Marshall Luban, Erich Krickemeyer, Angewandte Chemie International Edition 41, 579 (2002)CrossRefGoogle Scholar
  47. 47.
    A.M. Cassell, N.R. Franklin, T.W. Tombler, E.M. Chan, J. Han, H. Dai, Journal of the American Chemical Society 121, 7975 (1999)CrossRefGoogle Scholar
  48. 48.
    Y.G. Zhang, A.L. Chang, J. Cao, Q. Wang, W. Kim, Y.M. Li, N. Morris, E. Yenilmez, J. Kong, H.J. Dai, Applied Physics Letters 79, 3155 (2001)CrossRefGoogle Scholar
  49. 49.
    S. Huang, X. Cai, J. Liu, Nano Letters 4(6), 1025 (2004)CrossRefGoogle Scholar
  50. 50.
    B.Q. Wei, R. Vajtai, Y. Jung, J. Ward, R. Zhang, G. Ramanath, P.M. Ajayan, Nature 416, 495 (2002)CrossRefPubMedGoogle Scholar
  51. 51.
    S.M. Huang, L.M. Dai, A.W.H. Mau, Advanced Materials 14, 1140 (2002)CrossRefGoogle Scholar
  52. 52.
    S.M. Huang, A.H.W. Mau, Applied Physics Letters 82, 796 (2003)CrossRefGoogle Scholar
  53. 53.
    S.M. Huang, A.W.H. Mau, Journal of Physical Chemistry B 107, 3455 (2003)CrossRefGoogle Scholar
  54. 54.
    G. Gu, G. Philipp, X.C. Wu, M. Burghard, A.M. Bittner, S. Roth, Advanced Functional Materials 11, 295 (2001)CrossRefGoogle Scholar
  55. 55.
    S. Huang, Q. Fu, L. An, J. Liu, Physical Chemistry Chemical Physics 6, 1077 (2004)CrossRefGoogle Scholar
  56. 56.
    J. Kong, H.T. Soh, A.M. Cassell, C.F. Quate, H.J. Dai, Nature 395, 878 (1998)CrossRefGoogle Scholar
  57. 57.
    R.T.K. Baker, P.S. Harris, Formation of Filamentous Carbon, Vol. 14. New York: Marcel Dekker, 1978Google Scholar
  58. 58.
    R.T.K. Baker, Carbon 27, 315 (1989)CrossRefGoogle Scholar
  59. 59.
    S.B. Sinnott, R. Andrews, D. Qian, A.M. Rao, Z. Mao, E.C. Dickey, F. Derbyshire, Chemical Physics Letters 315, 25 (1999)CrossRefGoogle Scholar
  60. 60.
    J. Han, J.-B. Yoo, C.Y. Park, H.-J. Kim, G.S. Park, M. Yang, I.T. Han, N. Lee, W. Yi, S.G. Yu, J.M. Kim, Journal of Applied Physics 91, 483. (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Shaoming Huang
  • Jie Liu

There are no affiliations available

Personalised recommendations