Skip to main content

Carbon Nanotube—Biomolecule Interactions: Applications in Carbon Nanotube Separation and Biosensing

  • Chapter
Applied Physics of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

Abstract

We describe a DNA-carbon nanotube hybrid material that has proven useful for dispersion and structure-based separation. Single-stranded DNA binds strongly to carbon nanotubes, rendering them dispersable in water as charged colloidal particles. These can be subjected to separation techniques. Certain sequences form hybrids that allow separation on the basis of the properties of the core nanotube material. Carbon nanotubes dispersed by a non-ionic surfactant can also be separated by an alternative technique. Molecular models suggest that the hybrid structure consists of helical wrapping of the DNA around the nanotube, in good agreement with AFM data. We propose that the separation mechanism relies on modulation of the electric field of the DNA phosphate charge by interactions with the nanotube core. Finally, we show an example of the use of carbon nanotube-biomolecule interactions for detection using a CNT-based field effect transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.C. Seeman: Trends Biotechnol 17, 437–43 (1999)

    Article  PubMed  Google Scholar 

  2. A.P. Alivisatos, et al.: Nature 382, 609–11 (1996)

    Article  PubMed  Google Scholar 

  3. C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff: Nature 382, 607–9 (1996)

    Article  PubMed  Google Scholar 

  4. M.R. Arkin: Science 273, 475–80 (1996)

    PubMed  Google Scholar 

  5. S. Wang, et al.: Nature Materials 2, 196–200 (2003)

    Article  PubMed  Google Scholar 

  6. S.R. Whaley, D.S. English, E.L. Hu, P.F. Barbara, A.M. Belcher: Nature 405, 665–8 (2000)

    Article  PubMed  Google Scholar 

  7. G.R. Dieckmann, et al.: J Am Chem Soc 125, 1770–7 (2003)

    Article  PubMed  Google Scholar 

  8. D.S. Wilson, and J.W. Szostak: Annu Rev Biochem 68, 611–47 (1999)

    Article  PubMed  Google Scholar 

  9. M.J. O'Connell, et al.: Science 297, 593–6 (2002)

    Article  PubMed  Google Scholar 

  10. M.J. O'Connell, et al.: Chem. Phys. Lett. 342, 265–271 (2001)

    Article  Google Scholar 

  11. D. Chattopadhyay, I. Galeska, and F. Papadimitrakopoulos: J Am Chem Soc 125, 3370–5 (2003)

    Article  PubMed  Google Scholar 

  12. R. Krupke, F. Hennrich, H. Lohneysen, and M.M. Kappes: Science 301, 344–7 (2003)

    Article  PubMed  Google Scholar 

  13. R.B. Weisman: Nat Mater 2, 569–70 (2003)

    Article  PubMed  Google Scholar 

  14. M. Zheng, et al.: Nat Mater 2, 338–42 (2003)

    Article  PubMed  Google Scholar 

  15. M. Zheng, et al.: Science 302, 1545–8 (2003)

    Article  PubMed  Google Scholar 

  16. S.M. Bachilo, et al.: J. Am. Chem. Soc. 125, 11186–11187 (2003)

    Article  Google Scholar 

  17. J.R. Williamson: Annu Rev Biophys Biomol Struct 23, 703–30 (1994)

    Article  PubMed  Google Scholar 

  18. T.C. Marsh, J. Vesenka, and E.A. Henderson: Nucleic Acids Res 23, 696–700 (1995)

    PubMed  Google Scholar 

  19. M.S. Strano, et al.: Journal of Physical Chemistry B 107, 6979–6985 (2003)

    Article  Google Scholar 

  20. P.G. Collins, K. Bradley, M. Ishigami, and A. Zettl: Science 287, 1801–4 (2000)

    Article  PubMed  Google Scholar 

  21. V. Derycke, R. Martel, J. Appenzeller, and P. Avouris: Applied Physics Letters 80, 2773–2775 (2002)

    Article  Google Scholar 

  22. S.H. Jhi, S.G. Louie, and M.L. Cohen: Phys Rev Lett 85, 1710–3 (2000)

    Article  PubMed  Google Scholar 

  23. D.C. Sorescu, K.D. Jordon, and P. Avouris: Journal of Physical Chemistry B 105, 11227–11232 (2001)

    Article  Google Scholar 

  24. W. Saenger, Principles of Nucleic Acid Structure (Springer-Verlag, New York, 1984)

    Google Scholar 

  25. Discover with pcff force-field, Accelrys Inc.

    Google Scholar 

  26. G.S. Manning: Q. Rev Biophys 11, 179–246 (1978)

    PubMed  Google Scholar 

  27. G.S. Manning: Biophys Chem 101–102, 461–73 (2002)

    Article  PubMed  Google Scholar 

  28. L.X. Benedict, S.G. Louie, and M.L. Cohen: Physical Review. B. Condensed Matter. 52, 8541–8549 (1995)

    PubMed  Google Scholar 

  29. J.F. Nye, Physical Properties of Crystals, Their Representation by Tensors and Matrices (Clarendon Press, Oxford, 1985)

    Google Scholar 

  30. A.J.M. Spencer, Continuum Mechanics (Longman, London, 1980)

    Google Scholar 

  31. J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999)

    Google Scholar 

  32. Computed using a commercial finite element program, ABAQUS, version 6.4, HKS (Rhode Island, USA).

    Google Scholar 

  33. R.J. Chen, et al.: Proc Natl Acad Sci U S A 100, 4984–9 (2003)

    Article  PubMed  Google Scholar 

  34. A. Star, J.-C.P. Gabriel, K. Bradley, and G. Gruner: Nano Letters 3, 459–463 (2003)

    Article  Google Scholar 

  35. S. Boussaad, N.J. Tao, R. Zhang, T.J. Hopson, and L.A. Nagahara: Chem. Commun. 13, 1502–1503 (2003)

    Article  Google Scholar 

  36. C. Zhou, J. Kong, E. Yenilmez, and H. Dai, H.: Science 290, 1552–5 (2000)

    Article  PubMed  Google Scholar 

  37. S. Boussaad, N.J. Tao, and R. Arechabaleta: Chemical Physics Letters 280, 397–403 (1997)

    Article  Google Scholar 

  38. B.R. Azamian, J.J. Davis, K.S. Coleman, C.B. Bagshaw, and M.L. Green: J Am Chem Soc 124, 12664–5 (2002)

    Article  PubMed  Google Scholar 

  39. S. Kazaoui, N. Minami, N. Matsuda, H. Kataura, and Y. Achiba: Applied Physics Letters 78, 3433–3435 (2001)

    Article  Google Scholar 

  40. S. Rosenblatt, et al.: Nano Letters 2, 869–872 (2002)

    Article  Google Scholar 

  41. G.R. Moore, and G.W. Pettigrew, in Cytochrome c: evolutionary, structural and physicochemical aspects (Springer-Verlag, 1990)

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jagota, A., Diner, B., Boussaad, S., Zheng, M. (2005). Carbon Nanotube—Biomolecule Interactions: Applications in Carbon Nanotube Separation and Biosensing. In: Rotkin, S.V., Subramoney, S. (eds) Applied Physics of Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28075-8_10

Download citation

Publish with us

Policies and ethics