Skip to main content

From Quantum Models to Novel Effects to New Applications: Theory of Nanotube Devices

  • Chapter
Applied Physics of Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 1458 Accesses

Abstract

Classical and quantum effects in the physics of nanotube devices are presented. In particular, weak screening in one—dimensional systems is shown to essentially modify textbook theory of field—effect devices and lead to an interesting dependence of the device characteristics on geometrical factors. The capacitance of a nanoscale device has two main components: a classical geometric capacitance and a quantum term. The latter is related to a finite density of states of the nanosystem. Derivation of this density of states in the presence of external perturbations is a difficult task. We present some examples of the modification of the nanotube bandstructure by external perturbations. Electric fields can be used for band gap engineering in nanotubes, which may be translated into the device function. The concept of the Metallic Field—Effect Transistor is proposed. This device shows, at least theoretically, metallic conductance in the ON state and insulating behavior in the OFF state, which may be important for applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Feynman: There's plenty of room at the bottom: An invitation to enter a new field of physics. In: Engineering and Science, vol XXIII, No. 5, (Caltech 1960) pp 22–36

    Google Scholar 

  2. S. Iijima: Nature 354, 56 (1991)

    Article  Google Scholar 

  3. M. Damnjanović, I. Milošević, T. Vuković, B. Nikolić and E. Dobardžić: “Symmetry Based Fundamentals on Carbon Nanotubes”, Chapter 2, in this volume.

    Google Scholar 

  4. Phaedon Avouris, Marko Radosavljević and Shalom J. Wind: “Carbon Nanotube Electronics and Optoelectronics”, Chapter 9, in this volume.

    Google Scholar 

  5. R. Bruce Weisman: “Fluorescence Spectroscopy of Single-Walled Carbon Nanotubes”, Chapter 8, in this volume.

    Google Scholar 

  6. Anand Jagota, Bruce A. Diner, Salah Boussaad, and Ming Zheng: “Carbon Nanotube — Biomolecule Interactions: Applications in Carbon Nanotube Separation and Biosensing”, Chapter 10, in this volume.

    Google Scholar 

  7. M.S. Strano, M.L. Usrey, P.W. Barone, D.A. Heller and S. Baik: “The Selective Chemistry of Single Walled Carbon Nanotubes”, Chapter 6, in this volume.

    Google Scholar 

  8. S. Huang and J. Liu: “Direct Growth of Single Walled Carbon Nanotubes on Flat Substrates for Nanoscale Electronic Applications”, Chapter 4, in this volume.

    Google Scholar 

  9. T. Ando, A.B. Fowler, F. Stern: Rev. Mod. Phys. 54(2), 437(1982)

    Article  Google Scholar 

  10. J. Voit: Rep. Prog. Phys. 57, 977 (1995)

    Article  Google Scholar 

  11. N.R. Aluru, J-P. Leburton, W. McMahon, U. Ravaioli, S.V. Rotkin, M. Staedele, T. van der Straaten, B.R. Tuttle and K. Hess: “Modeling Electronics on the Nanoscale”, in “Handbook of Nanoscience, Engineering and Technology”, Eds.: W. Goddard, D. Brenner, S. Lyshevski, G.J. Iafrate; (CRC Press 2002)

    Google Scholar 

  12. Dmitriy A. Dikin, Xinqi Chen, Frank T. Fisher and Rodney S. Ruoff: “Nanomanipulator Measurements of the Mechanics of Nanostructures and Nanocomposites”, Chapter 12, in this volume.

    Google Scholar 

  13. M. Dequesnes, S.V. Rotkin, N.R. Aluru: Journal of Computational Electronics 1(3), 313(2002)

    Article  Google Scholar 

  14. T. Durkop, S.A. Getty, E. Cobas, and M.S. Fuhrer: Nano Letters 4, 35 (2004)

    Article  Google Scholar 

  15. Y. Cui, X. Duan, J. Hu, and C.M. Lieber: J. Phys. Chem. B 104, 5213 (2000)

    Article  Google Scholar 

  16. H. Hasegawa and S. Kasai: Physica E 11, 149 (2001)

    Article  Google Scholar 

  17. J.-R. Kim et al.: Appl. Phys. Lett. 80, 3548 (2002)

    Article  Google Scholar 

  18. Y. Zhang, A. Kolmakov, S. Chretien, H. Meitu and M. Moskovits: Nano Letters 4(3), 403(2004)

    Article  Google Scholar 

  19. S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller, Ph. Avouris: Phys. Rev. Lett. 89, 106801 (2002)

    Article  PubMed  Google Scholar 

  20. N.S. Averkiev and A.Y. Shik: Semiconductors 30, 112 (1996)

    Google Scholar 

  21. H. Ruda and A. Shik: J. Appl. Phys. 84, 5867 (1998)

    Article  Google Scholar 

  22. K.A. Bulashevich and S.V. Rotkin: JETP Lett. 75, 205 (2002)

    Article  Google Scholar 

  23. S.V. Rotkin, V. Srivastava, K.A. Bulashevich, and N.R. Aluru: International Journal of Nanoscience 1, 337 (2002)

    Article  Google Scholar 

  24. S.V. Rotkin, H. Ruda, A. Shik: International Journal of Nanoscience 3(1/2), 161 (2004)

    Article  Google Scholar 

  25. S.V. Rotkin, H.E. Ruda, and A. Shik: Appl. Phys. Lett. 83, 1623 (2003)

    Article  Google Scholar 

  26. M. Abramovitz and I.A. Stegun: Handbook of Mathematical Functions (Dover, New-York, 1964)

    Google Scholar 

  27. T. Maemoto, H. Yamamoto, M. Konami, A. Kajiuchi, T. Ikeda, S. Sasa, and M. Inoue: Phys. Stat. Sol. (b) 204, 255 (1997)

    Article  Google Scholar 

  28. G.L. Harris, P. Zhou, M. He, and J.B. Halpern: Lasers and Electro—Optics, 2001, CLEO'01. Technical Digest, p.239

    Google Scholar 

  29. S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, and P. Avouris: Appl. Phys. Lett. 80, 3817 (2002)

    Article  Google Scholar 

  30. X. Liu, C. Lee, and C. Zhou: Appl. Phys. Lett. 79, 3329 (2001)

    Article  Google Scholar 

  31. F. Leonard and J. Tersoff: Phys. Rev. Lett. 88, 258302 (2002)

    Article  PubMed  Google Scholar 

  32. S. Luryi: Appl. Phys. Lett. 52(6), 501 (1988)

    Article  Google Scholar 

  33. M. Dequesnes, S.V. Rotkin, N.R. Aluru: Nanotechnology 13, 120(2002)

    Article  Google Scholar 

  34. S.V. Rotkin: in Microfabricated Systems and MEMS-VI, vol. PV 2002-6, Symposium-the Electrochemical Society Proceedings, P.J. Hesketh, S.S. Ang, J.L. Davidson, H.G. Hughes, and D. Misra, Eds. (ECS Inc., Pennington, NJ, USA 2002) pp. 90–97.

    Google Scholar 

  35. S.V. Rotkin, “Theory of Nanotube Nanodevices”, in Nanostructured Materials and Coatings for Biomedical and Sensor Applications, Editors: Y.G. Gogotsi and Irina V. Uvarova (Kluwer Academic Publishers: Dordrecht-Boston-London 2003) Vol. 102, pp. 257–277

    Google Scholar 

  36. A. A. Odintsov, Y. Tokura: Journal of Low Temperature Physics, 118, 509 (2000)

    Article  Google Scholar 

  37. A.G. Petrov, S.V. Rotkin: Nano Letters 3(6), 701(2003)

    Article  Google Scholar 

  38. Y. Yaish, J.-Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, and P. L. McEuen: Phys. Rev. Lett., 92, 046 401-1(2004)

    Google Scholar 

  39. S. Akita, Y. Nakayama, S. Mizooka, et al.: Appl. Phys. Lett. 79(11), 1691(2001)

    Article  Google Scholar 

  40. D. Lu, Y. Li, S.V. Rotkin, U. Ravaioli, and K. Schulten, Nano Letters 4(12), 2383 (2004)

    Article  Google Scholar 

  41. Y. Li, S.V. Rotkin, and U. Ravaioli: Nano Letters, 3, no.2, 183(2003)

    Article  Google Scholar 

  42. J. Gonzalez, F. Guinea, MAH. Vozmediano: Nuclear Physics B. 406(3), 771 (1993) D.P. DiVincenzo, E.J. Mele: Phys.Rev. B 29(4), 1685 (1984)

    Article  Google Scholar 

  43. S.V. Rotkin, K.A. Bulashevich, N.R. Aluru: in Procs.—ECS PV 2002-12, P.V. Kamat, D.M. Guldi, and K.M. Kadish, Eds. (ECS Inc., Pennington, NJ, USA 2002) pp. 512–519

    Google Scholar 

  44. S. Suzukia, Ch. Bower, Y. Watanabe, O. Zhou: Appl. Phys. Lett. 76(26), 4007 (2000)

    Article  Google Scholar 

  45. M. Shiraishi, M. Ata: Carbon 39, 1913 (2001)

    Article  Google Scholar 

  46. Y. Li, S.V. Rotkin, and U. Ravaioli: Appl. Phys. Lett. 85(18), 4178 (2004)

    Article  Google Scholar 

  47. S.V. Rotkin: Proceedings of SPIE, Vol. 5509, 145 (2004)

    Article  Google Scholar 

  48. F. Leonard, J. Tersoff: Appl. Phys. Lett. 81, 4835 (2002)

    Article  Google Scholar 

  49. S.V. Rotkin, and K. Hess, Appl. Phys. Lett. 84(16), 3139(2004)

    Article  Google Scholar 

  50. S.V. Rotkin, and K. Hess, in Technical Proceedings of the 2003 Nanotechnology Conference and Trade Show, Volume 1–3, (March 7–11, 2004), Boston, Massachusetts, USA

    Google Scholar 

  51. K. Hess: Advanced Theory of Semiconductor Devices (New York: IEEE Press 2000)

    Google Scholar 

  52. F. Chudnovskiy, S. Luryi, and B. Spivak: in Future Trends in Microelectronics: The Nano Millennium, ed. by S. Luryi, J.M. Xu, and A. Zaslavsky (Wiley Interscience, New York 2002) pp. 148–155

    Google Scholar 

  53. J. Appenzeller: Device Research Conference, Utah, June 26, 2003

    Google Scholar 

  54. J. Appenzeller, R. Martel, V. Derycke, M. Radosavljevic, S. Wind, D. Neumayer, and P. Avouris: Microelectronic Engineering 64, 391 (2002)

    Article  Google Scholar 

  55. Ph.G. Collins, Ph. Avouris: Sci.Am. 12, 62(2002) Ph. Avouris: Chemical Physics 281, 429(2002)

    Google Scholar 

  56. H. Suzuura and T. Ando: Phys. Rev. B 65, 235412 (2002)

    Google Scholar 

  57. T. Ando and T. Nakanishi: J. Phys. Soc. Jpn. 67, 1704 (1998) T. Ando, T. Nakanishi and R. Saito: J. Phys. Soc. Japan 67, no. 8, 2857 (1998)

    Article  Google Scholar 

  58. A.G. Petrov, S.V. Rotkin: Phys. Rev. B 70(3), 035408 (2004)

    Google Scholar 

  59. T. Vukovic, I. Milosevic, M. Damnjanovic: Phys. Rev. B 65(04), 5418 (2002)

    Google Scholar 

  60. S.V. Rotkin, G. Wilson, J.S. Moore, and K. Hess: unpublished

    Google Scholar 

  61. J. Appenzeller, J. Knoch, R. Martel, V. Derycke, S.J. Wind, P. Avouris: IEEE Transactions on Nanotechnology, 1(4), 184 (2002)

    Article  Google Scholar 

  62. P.L. McEuen, M. Bockrath, D.H. Cobden, Y-G. Yoon, and S.G. Louie: Phys. Rev. Lett. 83, 5098 (1999)

    Article  Google Scholar 

  63. L. Rotkina, J.-F. Lin, J.P. Bird, Appl. Phys. Lett. 83(21), 4426 (2003)

    Article  Google Scholar 

  64. K.A. Matveev: Phys. Rev. B 51, 1743 (1995)

    Google Scholar 

  65. J.-F. Lin, J.P. Bird, L. Rotkina, P.A. Bennett: Appl. Phys. Lett. 82(5), 802 (2003); J.-F. Lin, J.P. Bird, L. Rotkina, A. Sergeev and V. Mitin, Appl. Phys. Lett. 84 (19), 3828 (2004)

    Article  Google Scholar 

  66. A.V. Krasheninnikov, K. Nordlund, and J. Keinonen: Phys. Rev. B 65, 165423 (2002) A.V. Krasheninnikov, K. Nordlund, M. Sirvio, E. Salonen, and J. Keinonen: Phys. Rev. B 63, 245405 (2001)

    Google Scholar 

  67. F.Z. Cui, Z.J. Chen, J. Ma, G.R. Xia and Y. Zhai: Physics Letters A 295(1), 55 (2002)

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rotkin, S. (2005). From Quantum Models to Novel Effects to New Applications: Theory of Nanotube Devices. In: Rotkin, S.V., Subramoney, S. (eds) Applied Physics of Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28075-8_1

Download citation

Publish with us

Policies and ethics