Skip to main content

Eigenvalue Problems in Surface Acoustic Wave Filter Simulations

  • Conference paper
Progress in Industrial Mathematics at ECMI 2004

Part of the book series: Mathematics in Industry ((TECMI,volume 8))

Summary

Surface acoustic wave filters are widely used for frequency filtering in telecommunications. These devices mainly consist of a piezoelectric substrate with periodically arranged electrodes on the surface. The periodic structure of the electrodes subdivides the frequency domain into stop-bands and pass-bands. This means only piezoelectric waves excited at frequencies belonging to the pass-band-region can pass the devices undamped.

The goal of the presented work is the numerical calculation of so-called “dispersion diagrams”, the relation between excitation frequency and a complex propagation parameter. The latter describes damping factor and phase shift per electrode.

The mathematical model is governed by two main issues, the underlying periodic structure and the indefinite coupled field problem due to piezoelectric material equations. Applying Bloch-Floquet theory for infinite periodic geometries yields a unit-cell problem with quasi-periodic boundary conditions. We present two formulations for a frequency-dependent eigenvalue problem describing the dispersion relation.

Reducing the unit-cell problem only to unknowns on the periodic boundary results in a small-sized quadratic eigenvalue problem which is solved by QZ-methods. The second method leads to a large-scaled generalized non-hermitian eigenvalue problem which is solved by Arnoldi methods.

The effect of periodic perturbations in the underlying geometry is confirmed by numerical experiments. Moreover, we present simulations of high frequency SAW- filter structures as used in TV-sets and mobile phones.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, Philadelphia, third edition, 1999.

    Google Scholar 

  2. Mermin Ashcroft. Solid State Physics. Holt-Sounders International, 1976.

    Google Scholar 

  3. B. Auld. Acoustic Fields and Waves in Solids, volume 1, 2. Krieger, second edition, 1990.

    Google Scholar 

  4. W. Axmann and Kuchment P. An efficient finite element method for computing spectra of photonic and acoustic band-gap materials, scalar case. Journal of Computational Physics, 150:468–481, 1999.

    Article  MathSciNet  Google Scholar 

  5. Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, and H. van der Vorst, editors. Templates for the solution of Algebraic Eigenvalue Problems: A Practical Guide. SIAM, Philadelphia, 2000.

    Google Scholar 

  6. A. Bensoussan, J.L. Lions, and G. Papanicolaou. High frequenca wave propagation in periodic structures. In J. L. Lions, G. Papanicolaou, and R.T. Rockafellar, editors, Asymptotic Analysis for periodic structures, Studies in Mathematics and its Applications, pages 614–626. North-Holland, 1978. Section 3, Spectral theroy of differential operators with periodic coefficients.

    Google Scholar 

  7. C. Bernardi, Y. Maday, and A. Patera. A new nonconforming approach to domain decomposition: the Mortar element method. pages 13–51, 1994.

    Google Scholar 

  8. B. Bunse-Gerstner, R. Byers, and V. Mehrmann. A chart on numerical methods for structured eigenvalue problems. SIAM Journal of Matrix Analysis and its Applications, 13:419–453, 1992.

    Article  MathSciNet  Google Scholar 

  9. F.M. Gomes and D.C. Sorensen. ARPACK++: A C++ implementation of ARPACK eigenvalue package. Technical report, Computational and Applied Mathematics, Rice University, 1997.

    Google Scholar 

  10. M. Hofer, N. Finger, S. Zaglmayr, J. Schöberl, G. Kovacs, U. Langer, and R. Lerch. Finite element calculation of the dispersion relations of infinitely extended saw structures, including bulk wave radiation. In Vittal S. Rao, editor, Proceedings of SPIE’s 9th Annual International Symposium on Smart Structures and Materials, pages 472–483. SPIE, 2002.

    Google Scholar 

  11. M. Hofer, N. Finger, S. Zaglmayr, J. Schöberl, G. Kovacs, U. Langer, and R. Lerch. Finite element calculation of wave propagation and excitation in periodic piezoelectric systems. In Proceedng of the Fifth World Congress on Computational Mechanics (WCCM V). Vienna University of Technology, Austria, 2002.

    Google Scholar 

  12. M. Koshiba, S. Mitobe, and M. Suzuki. Finite-element solution of periodic waveguides for acoustic waves. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 34(4), 1987.

    Google Scholar 

  13. P. Kuchment. Floquet theory of partial differential equations, volume 60 of Operator Theory Advances and Applications. Birkhaeuser Verlag, Basel and Boston, 1993.

    Google Scholar 

  14. R.B. Lehoucq, D.C. Sorensen, and C. Yang. Arpack users’ guide: Solution of large scale eigenvalue problems with implicitly restarted Arnoldi methods. Technical report, Computational and Applied Mathematics, Rice University, 1997.

    Google Scholar 

  15. R. Lerch. Analyse hochfrequenter akustischer Felder in Oberächenwellenfilter-Komponenten. Archiv für elektronische Übertragungstechnik (AEU), 44(4):317–327, 1990.

    Google Scholar 

  16. R. Lerch. Simulation of Piezoelectric Devices by Two-and Three-Dimensional Finite Elements. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 37(3):233–247, 1990.

    Article  Google Scholar 

  17. O. Madelung. Grundlagen der Halbleiterphysik, chapter 12. Folgerungen aus der Translationsinvarianz. Springer, Berlin, 1970.

    Google Scholar 

  18. V. Mehrmann and D. Watkins. Structure-preserving methods for computing eigenpairs of large sparse skew-Hamiltonian/Hamiltonian pencils. SIAM J. Sci. Comput., 22(6):1905, 2001.

    Article  MathSciNet  Google Scholar 

  19. D.P. Morgan. History of SAW Devices. In IEEE Frequency Control Symposium, pages 439–460, 1998.

    Google Scholar 

  20. N. Reed and B. Simon. Analysis of Operators, volume 4 of Methods of Modern Mathematical Physics, chapter 13 Spectral Analysis. Academic Press, 1978.

    Google Scholar 

  21. J. Schöberl. NETGEN-an advancing front 2D/3D-mesh generator based on abstract rules. Comput.Visual.Sci, (1):41–52, 1997.

    Article  MATH  Google Scholar 

  22. J. Schöberl. NGSolve. Online manual, 2003.

    Google Scholar 

  23. F. Tisseur and K. Meerbergen. The quadratic eigenvalue problem. SIAM Review, 43(2):235–286, 2001.

    Article  MathSciNet  Google Scholar 

  24. B. Wohlmuth. A Mortar finite element method using dual spaces for the Lagrange multiplier. SIAM Journal on Numerical Analysis, 38(3):989–1012, 2001.

    Article  MathSciNet  Google Scholar 

  25. S. Zaglmayr. Eigenvalue problems in surface acoustic wave filter simulations. Master’s thesis, Institute of Computational Mathematics, Johannes Kepler University Linz, Austria, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zaglmayr, S., Schöberl, J., Langer, U. (2006). Eigenvalue Problems in Surface Acoustic Wave Filter Simulations. In: Di Bucchianico, A., Mattheij, R., Peletier, M. (eds) Progress in Industrial Mathematics at ECMI 2004. Mathematics in Industry, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28073-1_7

Download citation

Publish with us

Policies and ethics