Skip to main content

CPY* and the Power of Yeast Genetics in the Elucidation of Quality Control and Associated Protein Degradation of the Endoplasmic Reticulum

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 300))

Abstract

CPY* is a mutated and malfolded secretory enzyme (carboxypeptidase yscY, Gly255Arg), which is imported into the endoplasmic reticulum but never reaches the vacuole, the destination of its wild type counterpart. Its creation, through mutation, had a major impact on the elucidation of the mechanisms of quality control and associated protein degradation of the endoplasmic reticulum, the eukaryotic organelle, where secretory proteins start the passage to their site of action. The use of CPY* and yeast genetics led to the discovery of a new cellular principle, the retrograde transport of lumenal malfolded proteins across the ER membrane back to their site of synthesis, the cytoplasm. These tools furthermore paved the way for our current understanding of the basic mechanism of malfolded protein discovery in the ER and their ubiquitinproteasome driven elimination in the cytosol (ERQD).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bays NW et al (2001) Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation. Nat Cell Biol 3:24–29

    CAS  PubMed  Google Scholar 

  2. Bays NW et al (2001) HRD4/NPL4 Is required for the proteasomal processing of ubiquitinated ER proteins. Mol Biol Cell 12:4114–4128

    CAS  PubMed  Google Scholar 

  3. Bebök Z et al (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61 beta and a cytosolic, deglycosylated intermediary. J Biol Chem 273:29873–29878

    PubMed  Google Scholar 

  4. Biederer T et al (1997) Role of Cue1p in ubiquitination and degradation at the ER surface. Science 278(5344):1806–1809

    Article  CAS  PubMed  Google Scholar 

  5. Blobel G (1995) Unidirectional and bidirectional protein traffic across membranes. Cold Spring Harb Symp Quant Biol 60:1–10

    CAS  PubMed  Google Scholar 

  6. Bordallo J et al (1998) Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. Mol Biol Cell 9:209–222

    CAS  PubMed  Google Scholar 

  7. Bordallo J, Wolf DH (1999) A RING-H2 finger motif is essential for the function of Der3/Hrd1 in endoplasmic reticulum associated protein degradation in the yeast Saccharomyces cerevisiae. FEBS Lett 448:244–248

    Article  CAS  PubMed  Google Scholar 

  8. Braun S et al (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERAD of OLE1 and other substrates. EMBO J 21:615–621

    Article  CAS  PubMed  Google Scholar 

  9. Brodsky JL, McCracken AA (1999) ER protein quality control and proteasome-mediated protein degradation. Semin Cell Dev Biol 10:507–513

    CAS  PubMed  Google Scholar 

  10. Brodsky JL et al (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    Article  CAS  PubMed  Google Scholar 

  11. Buschhorn B et al (2004) A genome wide screen identifies Yos9p as a new lectin essential for ER-associated degradation (ERAD) of glycoproteins. FEBS Lett 577:422–426

    Article  CAS  PubMed  Google Scholar 

  12. Chen L, Madura K (2002) Rad23 promotes the targeting of proteolytic substrates to the proteasome. Mol Cell Biol 22:4902–4913

    CAS  PubMed  Google Scholar 

  13. Cronin SR et al (2002) Cod1p/Spf1p is a P-type ATPase involved in ER function and Ca2+ homeostasis. J Cell Biol 157:1017–1028

    Article  CAS  PubMed  Google Scholar 

  14. De Virgilio M et al (1998) Ubiquitination is required for the retro-translocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 273:9734–9743

    PubMed  Google Scholar 

  15. Deak PM, Wolf DH (2001) Membrane topology and function of Der3/Hrd1p as a ubiquitin-protein ligase (E3) involved in endoplasmic reticulum degradation. J Biol Chem 276:10663–10669

    Article  CAS  PubMed  Google Scholar 

  16. Dürr G et al (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9:1149–1162

    PubMed  Google Scholar 

  17. Ellgaard L, Helenius A (2003) Quality control in the endoplasmic reticulum. Nat Rev Mol Cell Biol 4:181–191

    Article  CAS  PubMed  Google Scholar 

  18. Ellgaard L et al (1999) Setting the standards: quality control in the secretory pathway. Science 286(5446):1882–1888

    Article  CAS  PubMed  Google Scholar 

  19. Elsasser S et al (2004) Rad23 and Rpn10 serve as alternative ubiquitin receptors for the proteasome. J Biol Chem 279:26817–26822

    Article  CAS  PubMed  Google Scholar 

  20. Finger A et al (1993) Analysis of two mutated vacuolar proteins reveals a degradation pathway in the endoplasmic reticulum or a related compartment of yeast. Eur J Biochem 218:565–574

    Article  CAS  PubMed  Google Scholar 

  21. Friedländer R et al (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2:379–384

    PubMed  Google Scholar 

  22. Funakoshi M et al (2002) Budding yeast Dsk2p is a polyubiquitin-binding protein that can interact with the proteasome. Proc Natl Acad Sci U S A 99:745–750

    Article  CAS  PubMed  Google Scholar 

  23. Gardner RG et al (2000) Endoplasmic reticulum degradation requires lumen to cytosol signaling. Transmembrane control of Hrd1p by Hrd3p. J Cell Biol 151:69–82

    Article  CAS  PubMed  Google Scholar 

  24. Gnann A et al (2004) Cystic fibrosis transmembrane conductance regulator degradation depends on the lectins Htm1p/EDEM and the Cdc48 protein complex in yeast. Mol Biol Cell 15:4125–4135

    Article  CAS  PubMed  Google Scholar 

  25. Hampton RY et al (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7:2029–2044

    CAS  PubMed  Google Scholar 

  26. Hartmann-Petersen R, Gordon C (2004) Proteins interacting with the 26S proteasome. Cell Mol Life Sci 61:1589–1595

    Article  CAS  PubMed  Google Scholar 

  27. Heinemeyer W et al (1991) Proteinase yscE, the yeast proteasome/multicatalytic-multifunctional proteinase: mutants unravel its function in stress induced proteolysis and uncover its necessity for cell survival. EMBO J 10:555–562

    CAS  PubMed  Google Scholar 

  28. Helenius A, Aebi M (2001) Intracellular functions of N-linked glycans. Science 291(5512):2364–2369

    Article  CAS  PubMed  Google Scholar 

  29. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479

    Article  CAS  PubMed  Google Scholar 

  30. Hill K, Cooper AA (2000) Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J 19:550–561

    CAS  PubMed  Google Scholar 

  31. Hiller MM et al (1996) ER degradation of a misfolded luminal protein by the cytosolic ubiquitin-proteasome pathway. Science 273(5282):1725–1728

    CAS  PubMed  Google Scholar 

  32. Hilt W, Wolf DH (1996) Proteasomes: destruction as a programme. Trends Biochem Sci 21:96–102

    Article  CAS  PubMed  Google Scholar 

  33. Hirsch C et al (2003) A role for N-glycanase in the cytosolic turnover of glycoproteins. EMBO J 22:1036–1046

    Article  CAS  PubMed  Google Scholar 

  34. Hirsch C et al (2004) Endoplasmic reticulum associated protein degradation—one model fits all? Biochim Biophys Acta 1695:215–223

    CAS  PubMed  Google Scholar 

  35. Hirsch C et al (2004) Yeast N-glycanase distinguishes between native and nonnative glycoproteins. EMBO Rep 5:201–206

    Article  CAS  PubMed  Google Scholar 

  36. Hitt R, Wolf DH (2004) Der1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS Yeast Res 4:721–729

    CAS  PubMed  Google Scholar 

  37. Hitt R, Wolf DH (2004) DER7, encoding alpha-glucosidase I is essential for degradation of malfolded glycoproteins of the endoplasmic reticulum. FEMS Yeast Res 4:815–820

    CAS  PubMed  Google Scholar 

  38. Huyer G et al (2004) Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J Biol Chem 279:38369–38378

    Article  CAS  PubMed  Google Scholar 

  39. Jakob CA et al (2001) Htm1p, a mannosidase-like protein, is involved in glycoprotein degradation in yeast. EMBO Rep 2:423–430

    CAS  PubMed  Google Scholar 

  40. Jakob CA et al (1998) Degradation of misfolded endoplasmic reticulum glycoproteins in Saccharomyces cerevisiae is determined by a specific oligosaccharide structure. J Cell Biol 142:1223–1233

    Article  CAS  PubMed  Google Scholar 

  41. Jarosch E et al (2002) Protein dislocation from the ER requires polyubiquitination and the AAA-ATPase Cdc48. Nat Cell Biol 4:134–139

    Article  CAS  PubMed  Google Scholar 

  42. Jungmann J et al (1993) Resistance to cadmium mediated by ubiquitin-dependent proteolysis. Nature 361(6410):369–371

    Article  CAS  PubMed  Google Scholar 

  43. Kim I et al (2004) Multiple interactions of rad23 suggest a mechanism for ubiquitylated substrate delivery important in proteolysis. Mol Biol Cell 15:3357–3365

    CAS  PubMed  Google Scholar 

  44. Knecht E, Rivett AJ (2000). Intracellular localization of proteasomes. In: Hilt W, Wolf DH (eds) Proteasomes: the world of regulatory proteolysis. Landes Bioscience, Georgetown/Eurekah.com, Austin, TX, pp 176–185

    Google Scholar 

  45. Knop M et al (1996) Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 15:753–763

    CAS  PubMed  Google Scholar 

  46. Knop M et al (1996) N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12:1229–1238

    Article  CAS  PubMed  Google Scholar 

  47. Knop M et al (1993) Vacuolar/lysosomal proteolysis: proteases, substrates, mechanisms. Curr Opin Cell Biol 5:990–996

    Article  CAS  PubMed  Google Scholar 

  48. Kostova Z, Wolf DH (2002). Protein quality control in the export pathway: the endoplasmic reticulum and its cytoplasmic proteasome connection. In: Dalbey RE, von Heijne G (eds) Protein targeting, transport and translocation. London, Academic Press, pp 180–213

    Google Scholar 

  49. Kostova Z, Wolf DH (2003) For whom the bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22:2309–2317

    Article  CAS  PubMed  Google Scholar 

  50. Kostova Z, Wolf DH (2005) Importance of carbohydrate positioning in the recognition of mutated CPY for ER-associated degradation. J Cell Science 118:1485–1492

    CAS  PubMed  Google Scholar 

  51. Lilley BN, Ploegh HL (2004) A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429(6994):834–840

    Article  CAS  PubMed  Google Scholar 

  52. Mechler B et al (1982) In vivo biosynthesis of vacuolar proteinases in proteinase mutants of Saccharomyces cerevisiae. Biochem Biophys Res Commun 107:770–778

    Article  CAS  PubMed  Google Scholar 

  53. Medicherla B et al (2004) A genomic screen identifies Dsk2p and Rad23p as essential components of ER-associated degradation. EMBO Rep 5:692–697

    Article  CAS  PubMed  Google Scholar 

  54. Nakatsukasa K et al (2001) Mnl1p, analpha-mannosidase-like protein in yeast Saccharomyces cerevisiae, is required for endoplasmic reticulum-associated degradation of glycoproteins. J Biol Chem 276:8635–8638

    Article  CAS  PubMed  Google Scholar 

  55. Nilsson IM, G von Heijne (1993) Determination of the distance between the oligosaccharyltransferase active site and the endoplasmic reticulum membrane. J Biol Chem 268:5798–5801

    CAS  PubMed  Google Scholar 

  56. Nishikawa S et al (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1070

    Article  CAS  PubMed  Google Scholar 

  57. Pilon M et al (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulum to the cytosol for degradation. EMBO J 16:4540–4548

    Article  CAS  PubMed  Google Scholar 

  58. Plemper RK et al (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388(6645):891–895

    Article  CAS  PubMed  Google Scholar 

  59. Plemper RK et al (1999) Genetic interactions of Hrd3p and Der3p/Hrd1p with Sec61p suggest a retro-translocation complex mediating protein transport for ER degradation. J Cell Sci 112:4123–4134

    CAS  PubMed  Google Scholar 

  60. Plemper RK et al (1999) Re-entering the translocon from the lumenal side of the endoplasmic reticulum. Studies on mutated carboxypeptidase yscY species. FEBS Lett 443:241–245

    Article  CAS  PubMed  Google Scholar 

  61. Plemper RK et al (1998) Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J Biol Chem 273:32848–32856

    Article  CAS  PubMed  Google Scholar 

  62. Plemper RK, Wolf DH (1999) Retrograde protein translocation: ERADication of secretory proteins in health and disease. Trends Biochem Sci 24:266–270

    Article  CAS  PubMed  Google Scholar 

  63. Rabinovich E et al (2002) AAA-ATPase p97/Cdc48p, a cytosolic chaperone required for endoplasmic reticulum-associated protein degradation. Mol Cell Biol 22:626–634

    Article  CAS  PubMed  Google Scholar 

  64. Rao H, Sastry A (2002) Recognition of specific ubiquitin conjugates is important for the proteolytic functions of the ubiquitin-associated domain proteins Dsk2 and Rad23. J Biol Chem 277:11691–11695

    CAS  PubMed  Google Scholar 

  65. Rendueles PS, Wolf DH (1988) Proteinase function in yeast: biochemical and genetic approaches to a central mechanism of post-translational control in the eukaryote cell. Fems Microbiol Rev 4:17–45

    CAS  PubMed  Google Scholar 

  66. Sommer T, Wolf DH (1997) Endoplasmic reticulum degradation: reverse protein flow of no return. FASEB J 11:1227–1233

    CAS  PubMed  Google Scholar 

  67. Spear ED, Ng DTW (2005) Single, context-specific glycans can target misfolded glycoproteins for ER-associated degradation. J Cell Biol 169:73–82

    Article  CAS  PubMed  Google Scholar 

  68. Strayle J et al (1999) Steady-state free Ca(2+) in the yeast endoplasmic reticulum reaches only 10 microM and is mainly controlled by the secretory pathway pump pmr1. EMBO J 18:4733–4743

    Article  CAS  PubMed  Google Scholar 

  69. Suzuki T et al (2000) PNG1, a yeast gene encoding a highly conserved peptide: N-glycanase. J Cell Biol 149:1039–1052

    Article  CAS  PubMed  Google Scholar 

  70. Swanson R et al (2001) A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. Genes Dev 15:2660–2674

    Article  CAS  PubMed  Google Scholar 

  71. Taxis C et al (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278:35903–35913

    Article  CAS  PubMed  Google Scholar 

  72. Teichert U et al (1989) Lysosomal (vacuolar) proteinases of yeast are essential catalysts for protein degradation, differentiation, and cell survival. J Biol Chem 264:16037–16045

    CAS  PubMed  Google Scholar 

  73. Travers KJ et al (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  74. Varshavsky A (1997) The ubiquitin system. Trends Biochem Sci 22:383–387

    Article  CAS  PubMed  Google Scholar 

  75. Vashist S et al (2002) Two distinctly localized p-type ATPases collaborate to maintain organelle homeostasis required for glycoprotein processing and quality control. Mol Biol Cell 13:3955–3966

    Article  CAS  PubMed  Google Scholar 

  76. Walter J et al (2001) Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J 20:3124–3131

    Article  CAS  PubMed  Google Scholar 

  77. Wang Q, Chang A (2003) Substrate recognition in ER-associated degradation mediated by Eps1, a member of the protein disulfide isomerase family. EMBO J 22:3792–3802

    CAS  PubMed  Google Scholar 

  78. Wiertz EJ et al (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384(6608):432–438

    Article  CAS  PubMed  Google Scholar 

  79. Wolf DH (1982) Proteinase action in vitro versus proteinase function in vivo: mutants shed light on intracellular proteolysis in yeast. Trends Biochem Sci 7:35–37

    Article  CAS  Google Scholar 

  80. Wolf DH (2004) Ubiquitin-proteasome system: from lysosome to proteasome: the power of yeast in the dissection of proteinase function in cellular regulation and waste disposal. Cell Mol Life Sci 61:1601–1614

    Article  CAS  PubMed  Google Scholar 

  81. Wolf DH, Fink GR (1975) Proteinase C (carboxypeptidase Y) mutant of yeast. J Bacteriol 123:1150–1156

    CAS  PubMed  Google Scholar 

  82. Wolf DH, Hilt W (2004) The proteasome: a proteolytic nanomachine of cell regulation and waste disposal. Biochim Biophys Acta 1695:19–31

    CAS  PubMed  Google Scholar 

  83. Ye Y et al (2001) The AAA ATPase Cdc48/p97 and its partners transport proteins from the ER into the cytosol. Nature 414(6864):652–656

    Article  CAS  PubMed  Google Scholar 

  84. Ye Y et al (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429(6994):841–847

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y et al (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12:1303–1314

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wolf, D.H., Schäfer, A. (2006). CPY* and the Power of Yeast Genetics in the Elucidation of Quality Control and Associated Protein Degradation of the Endoplasmic Reticulum. In: Wiertz, E., Kikkert, M. (eds) Dislocation and Degradation of Proteins from the Endoplasmic Reticulum. Current Topics in Microbiology and Immunology, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28007-3_3

Download citation

Publish with us

Policies and ethics