Skip to main content

Recognition and Delivery of ERAD Substrates to the Proteasome and Alternative Paths for Cell Survival

  • Chapter
Dislocation and Degradation of Proteins from the Endoplasmic Reticulum

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 300))

Abstract

Endoplasmic reticulum-associated protein degradation (ERAD) is a protein quality control mechanism that minimizes the detrimental effects of protein misfolding in the secretory pathway. Molecular chaperones and ER lumenal lectins are essential components of this process because they maintain the solubility of unfolded proteins and can target ERAD substrates to the cytoplasmic proteasome. Other factors are likely required to aid in the selection of ERAD substrates, and distinct proteinaceous machineries are required for substrate retrotranslocation/dislocation from the ER and proteasome targeting. When the capacity of the ERAD machinery is exceeded or compromised, multiple degradative routes can be enlisted to prevent the detrimental consequences of ERAD substrate accumulation, which include cell death and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahner A, Brodsky JL (2004) Checkpoints in ER-associated degradation: excuse me, which way to the proteasome? Trends Cell Biol. 14:474–478

    Article  CAS  PubMed  Google Scholar 

  • Akiyama Y, Ito K (2003) Reconstitution of membrane proteolysis by FtsH. J Biol Chem 278:18146–18153

    CAS  PubMed  Google Scholar 

  • Aridor M, Hannan LA (2000) Traffic jam: a compendium of human diseases that affect intracellular transport processes. Traffic 1:836–851

    Article  CAS  PubMed  Google Scholar 

  • Aridor M, Hannan LA (2002) Traffic jams II: an update of diseases of intracellular transport. Traffic 3:781–790

    CAS  PubMed  Google Scholar 

  • Arvan P, Zhao X, Ramos-Castaneda J, Chang A (2002) Secretory pathway quality control operating in Golgi, plasmalemmal, and endosomal systems. Traffic 3:771–780

    Article  CAS  PubMed  Google Scholar 

  • Bays NW, Hampton RY (2002) Cdc48-Ufd1-Npl4: stuck in the middle with Ub. Curr Biol 12:R366–R371

    Article  CAS  PubMed  Google Scholar 

  • Bebok Z, Mazzochi C, King SA, Hong JS, Sorscher EJ (1998) The mechanism underlying cystic fibrosis transmembrane conductance regulator transport from the endoplasmic reticulum to the proteasome includes Sec61beta and a cytosolic, deglycosylated intermediary. J Biol Chem 273:29873–29878

    Article  CAS  PubMed  Google Scholar 

  • Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D (2000) Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol 2:326–332

    CAS  PubMed  Google Scholar 

  • Blond-Elguindi S, Cwirla SE, Dower WJ, Lipshutz RJ, Sprang SR, Sambrook JF, Gething MJ (1993) Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75:717–728

    Article  CAS  PubMed  Google Scholar 

  • Braakman I (2001) A novel lectin in the secretory pathway. An elegant mechanism for glycoprotein elimination. EMBO Rep 2:666–668

    Article  CAS  PubMed  Google Scholar 

  • Braun BC, Glickman M, Kraft R, Dahlmann B, Kloetzel PM, Finley D, Schmidt M (1999) The base of the proteasome regulatory particle exhibits chaperone-like activity. Nat Cell Biol 1:221–226

    Article  CAS  PubMed  Google Scholar 

  • Braun S, Matuschewski K, Rape M, Thoms S, Jentsch S (2002) Role of the ubiquitin-selective CDC48(UFD1/NPL4) chaperone (segregase) in ERADofOLE1 and other substrates. EMBO J 21:615–621

    Article  CAS  PubMed  Google Scholar 

  • Brodsky JL (1996) Post-translational protein translocation: not all hsc70s are created equal. Trends Biochem Sci 21:122–126

    Article  CAS  PubMed  Google Scholar 

  • Brodsky JL (2001) Chaperoning the maturation of the cystic fibrosis transmembrane conductance regulator. Am J Physiol Lung Cell Mol Physiol 281:L39–L42

    CAS  PubMed  Google Scholar 

  • Brodsky JL, Goeckeler J, Schekman R (1995) BiP and Sec63p are required for both co-and posttranslational protein translocation into the yeast endoplasmic reticulum. Proc Natl Acad Sci U S A 1995 92:9643–9646

    CAS  PubMed  Google Scholar 

  • Brodsky JL, Werner ED, Dubas ME, Goeckeler JL, Kruse KB, McCracken AA (1999) The requirement for molecular chaperones during endoplasmic reticulum-associated protein degradation demonstrates that protein export and import are mechanistically distinct. J Biol Chem 274:3453–3460

    Article  CAS  PubMed  Google Scholar 

  • Brown CR, Hong-Brown LQ, Welch WJ (1997) Strategies for correcting the delta F508 CFTR protein-folding defect. J Bioenerg Biomembr 29:491–502

    Article  CAS  PubMed  Google Scholar 

  • Caramelo JJ, Castro OA, Alonso LG, De Prat-Gay G, Parodi AJ (2003) UDP-Glc:glycoprotein glucosyltransferase recognizes structured and solvent accessible hydrophobic patches in molten globule-like folding intermediates. Proc Natl Acad Sci U S A 100:86–91

    Article  CAS  PubMed  Google Scholar 

  • Casagrande R, Stern P, Diehn M, Shamu C, Osario M, Zuniga M, Brown PO, Ploegh H (2000) Degradation of proteins from the ER of S. cerevisiae requires an intact unfolded protein response pathway. Mol Cell 5: 729–735

    Article  CAS  PubMed  Google Scholar 

  • Cherry JM, Ball C, Weng S, Juvik G, Schmidt R, Adler C, Dunn B, Dwight S, Riles L, Mortimer RK, Botstein D (1997) Genetic and physical maps of Saccharomyces cerevisiae. Nature 387(6632 Suppl):67–73

    CAS  PubMed  Google Scholar 

  • Coughlan CM, Brodsky JL (2003) Yeast as a model system to investigate protein conformational diseases. Methods Mol Biol 232:77–90

    CAS  PubMed  Google Scholar 

  • Coughlan CM, Walker JL, Cochran JC, Wittrup KD, Brodsky JL (2004) Degradation of mutated bovine pancreatic trypsin inhibitor (BPTI) in the yeast vacuole suggests post-endoplasmic reticulum protein quality control. J Biol. Chem 279:15289–15297

    Article  CAS  PubMed  Google Scholar 

  • Crawshaw SG, Martoglio B, Meacock SL, High S (2004) A misassembled transmembrane domain of a polytopic protein associates with signal peptide peptidase. Biochem J 384:9–17

    CAS  PubMed  Google Scholar 

  • Dafforn TR, Mahadeva R, Elliott PR, Sivasothy P, Lomas DA (1999) A kinetic mechanism for the polymerization of alpha1-antitrypsin. J Biol Chem 274:9548–9555

    Article  CAS  PubMed  Google Scholar 

  • De Virgilio M, Weninger H, Ivessa NE (1998) Ubiquitination is required for the retrotranslocation of a short-lived luminal endoplasmic reticulum glycoprotein to the cytosol for degradation by the proteasome. J Biol Chem 273:9734–9743

    PubMed  Google Scholar 

  • Deeks ED, Cook JP, Day PJ, Smith DC, Roberts LM, Lord JM (2002) The low lysine content of ricin A chain reduces the risk of proteolytic degradation after translocation from the endoplasmic reticulum to the cytosol. Biochemistry 41:3405–3413

    Article  CAS  PubMed  Google Scholar 

  • Dimcheff DE, Portis JL, Caughey B (2003) Prion proteins meet protein quality control. Trends Cell Biol 13:337–340

    Article  CAS  PubMed  Google Scholar 

  • Ellgaard L, Molinari M, Helenius A (1999) Setting the standards: quality control in the secretory pathway. Science 286:1882–1888

    Article  CAS  PubMed  Google Scholar 

  • Fewell SW, Travers KJ, Weissman JS, Brodsky JL (2001) The action of molecular chaperones in the early secretory pathway. Annu Rev Genet 35:149–191

    Article  CAS  PubMed  Google Scholar 

  • Finley D, Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    PubMed  Google Scholar 

  • Flaherty KM, DeLuca-Flaherty C, McKay DB (1990) Three-dimensional structure of the ATPase fragment of a 70 K heat-shock cognate protein. Nature 346:623–628

    Article  CAS  PubMed  Google Scholar 

  • Flynn GC, Pohl J, Flocco MT, Rothman JE (1991) Peptide-binding specificity of the molecular chaperone BiP. Nature 353:726–730

    Article  CAS  PubMed  Google Scholar 

  • Fortun J, Dunn WA Jr, Joy S, Li J, Notterpek L (2003) Emerging role for autophagy in the removal of aggresomes in Schwann cells. J Neurosci 23:10672–10680

    CAS  PubMed  Google Scholar 

  • Frenkel Z, Shenkman M, Kondratyev M, Lederkremer GZ (2004) Separate roles and different routing of calnexin and ERp57 in endoplasmic reticulum quality control revealed by interactions with asialoglycoprotein receptor chains. Mol Biol Cell 15:2133–142

    Article  CAS  PubMed  Google Scholar 

  • Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T (2000) A regulatory link between ER-associated protein degradation and the unfolded-protein response. Nat Cell Biol 2:379–384

    CAS  PubMed  Google Scholar 

  • Gassler CS, Buchberger A, Laufen T, Mayer MP, Schroder H, Valencia A, Bukau B (1998) Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone. Proc Natl Acad Sci U S A 1998 95:15229–15234

    Article  CAS  PubMed  Google Scholar 

  • Gelman MS, Kopito RR (2003) Cystic fibrosis: premature degradation of mutant proteins as a molecular disease mechanism. Methods Mol Biol 232:27–37

    CAS  PubMed  Google Scholar 

  • Groll M, Bajorek M, Kohler A, Moroder L, Rubin DM, Huber R, Glickman MH, Finley D (2000) A gated channel into the proteasome core particle. Nat Struct Biol 7:1062–1067

    Article  CAS  PubMed  Google Scholar 

  • Haas IG, Wabl M (1983) Immunoglobulin heavy chain bindingprotein. Nature 306:387–389

    Article  CAS  PubMed  Google Scholar 

  • Hampton RY (2002) ER-associated degradation in protein quality control and cellular regulation. Curr Opin Cell Biol 14:476–482

    Article  CAS  PubMed  Google Scholar 

  • Hampton RY, Gardner RG, Rine J (1996) Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Mol Biol Cell 7:2029–2044

    CAS  PubMed  Google Scholar 

  • Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D (2000) Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell 6:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Haynes CM, Titus EA, Cooper AA (2004) Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell 15:767–776

    Article  CAS  PubMed  Google Scholar 

  • Helenius A, Aebi M (2004) Roles of N-linked glycans in the endoplasmic reticulum. Annu Rev Biochem 73:1019–1049

    Article  CAS  PubMed  Google Scholar 

  • Hill K, Cooper AA (2000) Degradation of unassembled Vph1p reveals novel aspects of the yeast ER quality control system. EMBO J 19:550–561

    CAS  PubMed  Google Scholar 

  • Holkeri H, Makarow M (1998) Different degradation pathways for heterologous glycoproteins in yeast. FEBS Lett 429:162–166

    Article  CAS  PubMed  Google Scholar 

  • Hong E, Davidson AR, Kaiser CA (1996) A pathway for targeting soluble misfolded proteins to the yeast vacuole. J Cell Biol 135:623–633

    Article  CAS  PubMed  Google Scholar 

  • Hosokawa N, Tremblay LO, You Z, Herscovics A, Wada I, Nagata K (2003) Enhancement of endoplasmic reticulum (ER) degradation of misfolded Null Hong Kong alpha1-antitrypsin by human ER mannosidase I. J Biol Chem 278:26287–26294

    Article  CAS  PubMed  Google Scholar 

  • Howard M, Fischer H, Roux J, Santos BC, Gullans SR, Yancey PH, Welch WJ (2003) Mammalian osmolytes and S-nitrosoglutathione promote Delta F508 cystic fibrosis transmembrane conductance regulator (CFTR) protein maturation and function. J Biol Chem 278:35159–35167

    Article  CAS  PubMed  Google Scholar 

  • Huyer G, Piluek WF, Fansler Z, Kreft SG, Hochstrasser M, Brodsky JL, Michaelis S (2004) Distinct machinery is required in Saccharomyces cerevisiae for the endoplasmic reticulum-associated degradation of a multispanning membrane protein and a soluble luminal protein. J Biol Chem 279:38369–38378

    Article  CAS  PubMed  Google Scholar 

  • Ihara Y, Cohen-Doyle MF, Saito Y, Williams DB (1999) Calnexin discriminates between protein conformational states and functions as a molecular chaperone in vitro. Mol Cell 4:331–341

    Article  CAS  PubMed  Google Scholar 

  • Jarosch E, Geiss-Friedlander R, Meusser B, Walter J, Sommer T (2002) Protein dislocation from the endoplasmic reticulum—pulling out the suspect. Traffic 3:530–536

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen MU, Emr SD, Winther JR (1999) Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae. Eur J Biochem 260:461–469

    Article  CAS  PubMed  Google Scholar 

  • Kabani M, Kelley SS, Morrow MW, Montgomery DL, Sivendran R, Rose MD, Gierasch LM, Brodsky JL (2003) Dependence of endoplasmic reticulum-associated degradation on the peptide binding domain and concentration of BiP. Mol Biol Cell 14:3437–3448

    Article  CAS  PubMed  Google Scholar 

  • Kim PS, Arvan P (1998) Endocrinopathies in the family of endoplasmic reticulum (ER) storage diseases: disorders of protein trafficking and the role of ER molecular chaperones. Endocr Rev 19:173–202

    Article  CAS  PubMed  Google Scholar 

  • Kleizen B, Braakman I (2004) Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol 16:343–349

    CAS  PubMed  Google Scholar 

  • Knittler MR, Dirks S, Haas IG (1995) Molecular chaperones involved in protein degradation in the endoplasmic reticulum: quantitative interaction of the heat shock cognate protein BiP with partially folded immunoglobulin light chains that are degraded in the endoplasmic reticulum. Proc Natl Acad Sci U S A 92:1764–1768

    CAS  PubMed  Google Scholar 

  • Knop M, Hauser N, Wolf DH (1996) N-Glycosylation affects endoplasmic reticulum degradation of a mutated derivative of carboxypeptidase yscY in yeast. Yeast 12:1229–1238

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR (1999) Biosynthesis and degradation of CFTR. Physiol Rev 79[1 Suppl]:S167–S173

    CAS  PubMed  Google Scholar 

  • Kopito RR (2000) Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol 10:524–530

    Article  CAS  PubMed  Google Scholar 

  • Kopito RR, Ron D (2000) Conformational disease. Nat Cell Biol 2:E207–E209

    Article  CAS  PubMed  Google Scholar 

  • Kostova Z, Wolf DH (2003) For whomthe bell tolls: protein quality control of the endoplasmic reticulum and the ubiquitin-proteasome connection. EMBO J 22:2309–2317

    Article  CAS  PubMed  Google Scholar 

  • Kruse KB, Brodsky JB, McCracken AA (2005) Characterization of an ERAD gene as VPS30/ATG6 reveals two alternative and functionally distinct protein quality control pathways: one for soluble A1PiZ and another for aggregates of A1PiZ. Mol Biol Cell (in press)

    Google Scholar 

  • Laufen T, Mayer MP, Beisel C, Klostermeier D, Mogk A, Reinstein J, Bukau B (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc Natl Acad Sci U S A 96:5452–5457

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Prakash S, Matouschek A (2002) Concurrent translocation of multiple polypeptide chains through the proteasomal degradation channel. J Biol Chem 277:34760–34765

    CAS  PubMed  Google Scholar 

  • Lee RJ, Liu CW, Harty C, McCracken AA, Latterich M, Romisch K, DeMartino GN, Thomas PJ, Brodsky JL (2004) Uncoupling retro-translocation and degradation in the ER-associated degradation of a soluble protein. EMBO J 23:2206–2215

    CAS  PubMed  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477

    Article  CAS  PubMed  Google Scholar 

  • Liberek K, Wall D, Georgopoulos C (1995) The DnaJ chaperone catalytically activates the DnaK chaperone to preferentially bind the sigma32 heat shock transcriptional regulator. Proc Natl Acad Sci U S A 92:6224–6228

    CAS  PubMed  Google Scholar 

  • Lilley BN, Ploegh HL (2004) Amembrane protein required for dislocation of misfolded proteins from the ER. Nature 429:834–840

    Article  CAS  PubMed  Google Scholar 

  • Liu CW, Corboy MJ, DeMartino GN, Thomas PJ (2003) Endoproteolytic activity of the proteasome. Science 299:408–411

    Article  CAS  PubMed  Google Scholar 

  • Lomas DA, Carrell RW (2002) Serpinopathies and the conformational dementias. Nat Rev Genet 3:759–768

    Article  CAS  PubMed  Google Scholar 

  • Lomas DA, Evans DL, Finch JT, Carrell RW (1992) The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 357:605–607

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Wollmann R, Lindquist S (2002) Neurotoxicity and neurodegeneration when PrP accumulates in the cytosol. Science 298:1781–1785

    CAS  PubMed  Google Scholar 

  • Mayer TU, Braun T, Jentsch S (1998) Role of the proteasome in membrane extraction of a short-lived ER-transmembrane protein. EMBO J 17:3251–3257

    Article  CAS  PubMed  Google Scholar 

  • McCarty JS, Buchberger A, Reinstein J, Bukau B (1995) The role of ATP in the functional cycle of the DnaK chaperone system. J Mol Biol 249:126–137

    Article  CAS  PubMed  Google Scholar 

  • McCracken AA, Brodsky JL (1996) Assembly of ER-associated protein degradation in vitro: dependence on cytosol, calnexin, and ATP. J Cell Biol 132:291–298

    Article  CAS  PubMed  Google Scholar 

  • McCracken AA, Brodsky JL (2003) Evolving questions and paradigm shifts in endoplasmic-reticulum-associated degradation (ERAD). Bioessays 25:868–877

    Article  CAS  PubMed  Google Scholar 

  • McCracken AA, Werner ED, Brodsky JL (1998) Endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Adv Mol Cell Biol 27:167–200

    Google Scholar 

  • Molinari M, Calanca V, Galli C, Lucca P, Paganetti P (2003) Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle. Science 299:1397–1400

    Article  CAS  PubMed  Google Scholar 

  • Mosser DD, Ho S, Glover JR (2004) Saccharomyces cerevisiae Hsp104 enhances the chaperone capacity of human cells and inhibits heat stress-induced proapoptotic signaling. Biochemistry 43:8107–8115

    Article  CAS  PubMed  Google Scholar 

  • Ng DT, Spear ED, Walter P (2000) The unfolded protein response regulates multiple aspects of secretory and membrane protein biogenesis and endoplasmic reticulum quality control. J Cell Biol 150:77–88

    Article  CAS  PubMed  Google Scholar 

  • Nishikawa SI, Fewell SW, Kato Y, Brodsky JL, Endo T (2001) Molecular chaperones in the yeast endoplasmic reticulum maintain the solubility of proteins for retrotranslocation and degradation. J Cell Biol 153:1061–1070

    Article  CAS  PubMed  Google Scholar 

  • Nishino I, Fu J, Tanji K, Yamada T, Shimojo S, Koori T, Mora M, Riggs JE, Oh SJ, Koga Y, Sue CM, Yamamoto A, Murakami N, Shanske S, Byrne E, Bonilla E, Nonaka I, DiMauro S, Hirano M (2000) Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 406:906–910

    Article  CAS  PubMed  Google Scholar 

  • Noorwez SM, Kuksa V, Imanishi Y, Zhu L, Filipek S, Palczewski K, Kaushal S (2003) Pharmacological chaperone-mediated in vivo folding and stabilization of the P23H-opsin mutant associated with autosomal dominant retinitis pigmentosa. J Biol Chem 278:14442–14450

    Article  CAS  PubMed  Google Scholar 

  • Oda Y, Hosokawa N, Wada I, Nagata K (2003) EDEM as an acceptor of terminally misfolded glycoproteins released from calnexin. Science 299:1394–1397

    Article  CAS  PubMed  Google Scholar 

  • Oliver JD, van der Wal FJ, Bulleid NJ, High S (1997) Interaction of the thiol-dependent reductase ERp57 with nascent glycoproteins. Science 275:86–88

    Article  CAS  PubMed  Google Scholar 

  • Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–355

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM (2004) Back to the future with ubiquitin. Cell 116:181–190

    Article  CAS  PubMed  Google Scholar 

  • Pilon M, Schekman R, Romisch K (1997) Sec61p mediates export of a misfolded secretory protein from the endoplasmic reticulumto the cytosol for degradation. EMBO J 16:4540–4548

    Article  CAS  PubMed  Google Scholar 

  • Plemper RK, Bohmler S, Bordallo J, Sommer T, Wolf DH (1997) Mutant analysis links the translocon and BiP to retrograde protein transport for ER degradation. Nature 388:891–895

    Article  CAS  PubMed  Google Scholar 

  • Plemper RK, Egner R, Kuchler K, Wolf DH (1998) Endoplasmic reticulum degradation of a mutated ATP-binding cassette transporter Pdr5 proceeds in a concerted action of Sec61 and the proteasome. J Biol Chem 273:32848–32856

    Article  CAS  PubMed  Google Scholar 

  • Qu D, Teckman JH, Omura S, Perlmutter DH (1996) Degradation of a mutant secretory protein, α1-antitrypsin A, in the endoplasmic reticulum requires proteasome activity. J Biol Chem 271:22791–22795

    CAS  PubMed  Google Scholar 

  • Rapoport TA, Matlack KE, Plath K, Misselwitz B, Staeck O (1999) Posttranslational protein translocation across the membrane of the endoplasmic reticulum. Biol Chem 380:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Ravikumar B, Duden R, Rubinsztein DC (2002) Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 11:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Ritter C, Helenius A (2000) Recognition of local glycoprotein misfolding by the ER folding sensor UDP-glucose:glycoprotein glucosyltransferase. Nat Struct Biol 7:278–280

    CAS  PubMed  Google Scholar 

  • Rodighiero C, Tsai B, Rapoport TA, Lencer WI (2002) Role of ubiquitination in retrotranslocation of cholera toxin and escape of cytosolic degradation. EMBO Rep 3:1222–1227

    Article  CAS  PubMed  Google Scholar 

  • Rudiger S, Germeroth L, Schneider-Mergener J, Bukau B (1997) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. EMBO J 16:1501–1507

    Article  CAS  PubMed  Google Scholar 

  • Rudiger S, Schneider-Mergener J, Bukau B (2001) Its substrate specificity characterizes the DnaJ co-chaperone as a scanning factor for the DnaK chaperone. EMBO J 20:1042–1050

    Article  CAS  PubMed  Google Scholar 

  • Russell R, Wali Karzai A, Mehl AF, McMacken R (1999) DnaJ dramatically stimulates ATP hydrolysis by DnaK: insight into targeting of Hsp70 proteins to polypeptide substrates. Biochemistry 38:4165–4176

    CAS  PubMed  Google Scholar 

  • Rutkowski DT, Kaufman RJ (2004) A trip to the ER: coping with stress. Trends Cell Biol 14:20–28

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Ward CL, Krouse ME, Wine JJ, Kopito RR (1996) Glycerol reverses the misfolding phenotype of the most common cystic fibrosis mutation. J Biol Chem 271:635–638

    CAS  PubMed  Google Scholar 

  • Sawkar AR, Cheng WC, Beutler E, Wong CH, Balch WE, Kelly JW (2002) Chemical chaperones increase the cellular activity of N370S beta-glucosidase: a therapeutic strategy for Gaucher disease. Proc Natl Acad Sci U S A 99:15428–15433

    Article  CAS  PubMed  Google Scholar 

  • Schekman R (2004) Cell biology: a channel for protein waste. Nature 429:817–818

    Article  CAS  PubMed  Google Scholar 

  • Schmid D, Baici A, Gehring H, Christen P (1994) Kinetics of molecular chaperone action. Science 263:971–973

    CAS  PubMed  Google Scholar 

  • Schubert U, Anton LC, Gibbs J, Norbury CC, Yewdell JW, Bennink JR (2000) Rapid degradation of a large fraction of newly synthesized proteins by proteasomes. Nature 404:770–774

    Article  CAS  PubMed  Google Scholar 

  • Shamu CE, Flierman D, Ploegh HL, Rapoport TA, Chau V (2001) Polyubiquitinylation is required for US11-dependent movement of MHC class I heavy chain from endoplasmic reticulum into cytosol. Mol Biol Cell 12:2546–2555

    CAS  PubMed  Google Scholar 

  • Shen Y, Meunier L, Hendershot LM (2002) Identification and characterization of a novel endoplasmic reticulum (ER) DnaJ homologue, which stimulates ATPase activity of BiP in vitro and is induced by ER stress. J Biol Chem 277:15947–15956

    CAS  PubMed  Google Scholar 

  • Sifers RN (2003) Cell biology. Protein degradation unlocked. Science 299:1330–1331

    Article  CAS  PubMed  Google Scholar 

  • Skowronek MH, Hendershot LM, Haas IG (1998) The variable domain of nonassembled Ig light chains determines both their half-life and binding to the chaperone BiP. Proc Natl Acad Sci U S A 95:1574–1578

    Article  CAS  PubMed  Google Scholar 

  • Song JL, Chuang DT (2001) Natural osmolyte trimethylamine N-oxide corrects assembly defects of mutant branched-chain alpha-ketoacid decarboxylase in maple syrup urine disease. J Biol Chem 276:40241–40246

    CAS  PubMed  Google Scholar 

  • Spear ED, Ng DT (2003) Stress tolerance of misfolded carboxypeptidase Y requires maintenance of protein trafficking and degradative pathways. Mol Biol Cell 14:2756–2767

    Article  CAS  PubMed  Google Scholar 

  • Strickland E, Hakala K, Thomas PJ, DeMartino GN (2000) Recognition of misfolding proteins by PA700, the regulatory subcomplex of the 26 S proteasome. J Biol Chem 275:5565–5572

    Article  CAS  PubMed  Google Scholar 

  • Suh WC, Burkholder WF, Lu CZ, Zhao X, Gottesman ME, Gross CA (1998) Interaction of the Hsp70 molecular chaperone, DnaK, with its cochaperone DnaJ. Proc Natl Acad Sci U S A 95:15223–15228

    Article  CAS  PubMed  Google Scholar 

  • Tamarappoo BK, Verkman AS (1998) Defective aquaporin-2 trafficking in nephrogenic diabetes insipidus and correction by chemical chaperones. J Clin Invest 101:2257–2267

    CAS  PubMed  Google Scholar 

  • Taxis C, Hitt R, Park SH, Deak PM, Kostova Z, Wolf DH (2003) Use of modular substrates demonstrates mechanistic diversity and reveals differences in chaperone requirement of ERAD. J Biol Chem 278:35903–35913

    Article  CAS  PubMed  Google Scholar 

  • Teckman JH, Perlmutter DH (2000) Retention of mutant alpha-antitrypsin Z in endoplasmic reticulum is associated with an autophagic response. Am J Physiol Gastrointest Liver Physiol 279:G961–G974

    CAS  PubMed  Google Scholar 

  • Teckman JH, Gilmore R, Perlmutter DH (2000) Role of ubiquitin in proteasomal degradation of mutant alpha-antitrypsin Z in the endoplasmic reticulum. Am J Physiol Gastrointest Liver Physiol 278:G39–G48

    CAS  PubMed  Google Scholar 

  • Teckman JH, Burrows J, Hidvegi T, Schmidt B, Hale PD, Perlmutter DH (2001) The proteasome participates in degradation of mutant alpha 1-antitrypsin Z in the endoplasmic reticulum of hepatoma-derived hepatocytes. J Biol Chem 276:44865–44872

    Article  CAS  PubMed  Google Scholar 

  • Teckman JH, An JK, Loethen S, Perlmutter DH (2002) Fasting in alpha1-antitrypsin deficient liver: constitutive activation of autophagy. Am J Physiol Gastrointest Liver Physiol 283:G1156–G1165

    CAS  PubMed  Google Scholar 

  • Thoms S (2002) Cdc48 can distinguish between native and non-native proteins in the absence of cofactors. FEBS Lett 520:107–110

    Article  CAS  PubMed  Google Scholar 

  • Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P (2000) Functional and genomic analyses reveal an essential coordination between the unfolded protein response and ER-associated degradation. Cell 101:249–258

    Article  CAS  PubMed  Google Scholar 

  • Trombetta ES, Parodi AJ (2003) Quality control and protein folding in the secretory pathway. Annu Rev Cell Dev Biol 19:649–676

    Article  CAS  PubMed  Google Scholar 

  • Tsai B, Ye Y, Rapoport TA (2002) Retro-translocation of proteins from the endoplasmic reticulum into the cytosol. Nat Rev Mol Cell Biol 3:246–255

    Article  CAS  PubMed  Google Scholar 

  • Vanhove M, Usherwood YK, Hendershot LM (2001) Unassembled Ig heavy chains do not cycle from BiP in vivo but require light chains to trigger their release. Immunity 15:105–114

    Article  CAS  PubMed  Google Scholar 

  • Varga K, Jurkuvenaite A, Wakefield J, Hong JS, Guimbellot JS, Venglarik CJ, Niraj A, Mazur M, Sorscher EJ, Collawn JF, Bebok Z (2004) Efficient intracellular processing of the endogenous cystic fibrosis transmembrane conductance regulator in epithelial cell lines. J Biol Chem 279:22578–22584

    Article  CAS  PubMed  Google Scholar 

  • Vashist S, Ng DT (2004) Misfolded proteins are sorted by a sequential checkpoint mechanism of ER quality control. J Cell Biol 165:41–52

    Article  CAS  PubMed  Google Scholar 

  • Verma R, Chen S, Feldman R, Schieltz D, Yates J, Dohmen J, Deshaies RJ (2000) Proteasomal proteomics: identification of nucleotide-sensitive proteasome-interacting proteins by mass spectrometric analysis of affinity-purified proteasomes. Mol Biol Cell 11:3425–3439

    CAS  PubMed  Google Scholar 

  • Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068

    Article  CAS  PubMed  Google Scholar 

  • Walter J, Urban J, Volkwein C, Sommer T (2001) Sec61p-independent degradation of the tail-anchored ER membrane protein Ubc6p. EMBO J 20:3124–3131

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Chang A (1999) Eps1, a novel PDI-related protein involved in ER quality control in yeast. EMBO J 18:5972–5982

    CAS  PubMed  Google Scholar 

  • Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013

    CAS  PubMed  Google Scholar 

  • Weibezahn J, Bukau B, Mogk A (2004) Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb Cell Fact 3:1–12

    Article  PubMed  Google Scholar 

  • Weihofen A, Martoglio B (2003) Intramembrane-cleaving proteases: controlled liberation of proteins and bioactive peptides. Trends Cell Biol 13:71–78

    Article  CAS  PubMed  Google Scholar 

  • Werner ED, Brodsky JL, McCracken AA (1996) Proteasome-dependent endoplasmic reticulum-associated protein degradation: an unconventional route to a familiar fate. Proc Natl Acad Sci U S A 93:13797–13801

    CAS  PubMed  Google Scholar 

  • Wiertz EJ, Tortorella D, Bogyo M, Yu J, Mothes W, Jones TR, Rapoport TA, Ploegh HL (1996) Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384:432–438

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson BM, Tyson JR, Stirling CJ (2001) Ssh1p determines the translocation and dislocation capacities of the yeast endoplasmic reticulum. Dev Cell 1:401–409

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Swulius MT, Moremen KW, Sifers RN (2003) Elucidation of the molecular logic by which misfolded alpha 1-antitrypsin is preferentially selected for degradation. Proc Natl Acad Sci U S A 100:8229–8234

    CAS  PubMed  Google Scholar 

  • Ye Y, Meyer HH, Rapoport TA (2003) Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 162:71–84

    Article  CAS  PubMed  Google Scholar 

  • Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA (2004) A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429:841–847

    Article  CAS  PubMed  Google Scholar 

  • Young BP, Craven RA, Reid PJ, Willer M, Stirling CJ (2001) Sec63p and Kar2p are required for the translocation of SRP-dependent precursors into the yeast endoplasmic reticulum in vivo. EMBO J 20:262–271

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Kopito RR (1999) The role of multiubiquitination in dislocation and degradation of the alpha subunit of the T cell antigen receptor. J Biol Chem 274:36852–36858

    CAS  PubMed  Google Scholar 

  • Zeitlin PL (2003) Emerging drug treatments for cystic fibrosis. Expert Opin Emerg Drugs 8:523–535

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Nijbroek G, Sullivan ML, McCracken AA, Watkins SC, Michaelis S, Brodsky JL (2001) Hsp70 molecular chaperone facilitates endoplasmic reticulum-associated protein degradation of cystic fibrosis transmembrane conductance regulator in yeast. Mol Biol Cell 12:1303–1314

    CAS  PubMed  Google Scholar 

  • Zhou M, Schekman R (1999) The engagement of Sec61p in the ER dislocation process. Mol Cell 4:925–934

    CAS  PubMed  Google Scholar 

  • Zhu X, Zhao X, Burkholder WF, Gragerov A, Ogata CM, Gottesman ME, Hendrickson WA (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science 272:1606–1014

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McCracken, A.A., Brodsky, J.L. (2006). Recognition and Delivery of ERAD Substrates to the Proteasome and Alternative Paths for Cell Survival. In: Wiertz, E., Kikkert, M. (eds) Dislocation and Degradation of Proteins from the Endoplasmic Reticulum. Current Topics in Microbiology and Immunology, vol 300. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28007-3_2

Download citation

Publish with us

Policies and ethics