Skip to main content

Biotechnology: Engineered male sterility in plant hybrid breeding

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 67))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Basra AS (ed) (2000) Hybrid seed production in vegetables: rationale and methods in selected crops. Food Products Press, Binghamton, New York

    Google Scholar 

  • Bino RJ (1985) Histological aspects of microsporogenesis in fertile, cytoplasmic male-sterile and restored fertile Petunia hybrida. Theor Appl Genet 69:423–428

    Article  Google Scholar 

  • Burgess DG, Ralston EJ, Hanson WG, Heckert M, Ho M, Jenq T, Palys JM, Tang K, Gutterson N (2002) A novel, two-component system for cell lethality and its use in engineering nuclear male-sterility in plants. Plant J 31:113–125

    Article  PubMed  CAS  Google Scholar 

  • Cigan AM, Albertsen MC (2000) Reversible nuclear genetic system for male sterility in transgenic plants. US patent number 6072102

    Google Scholar 

  • Denis M, Delourme R, Gourret JP, Mariani C, Renard M (1993) Expression of engineered nuclear male sterility in Brassica napus. Plant Physiol 101:1295–1304

    PubMed  CAS  Google Scholar 

  • Dong NV et al. (2000) Molecular mapping of a rice gene conditioning thermosensitive genic male sterility using AFLP, RFLP and SSR techniques. Theor Appl Genet 100:727–734

    Article  CAS  Google Scholar 

  • Dotson SB, Lanahan MB, Smith AG, Kishore GM (1996) A phosphonate monoester hydrolase from Burkholderia caryophilli PG2982 is useful as a conditional lethal gene in plant. Plant J 10:383–392

    Article  PubMed  CAS  Google Scholar 

  • Glover J, Grelon M, Craig S, Chaudury A, Dennis L (1998) Cloning and characterisation of MS5 from Arabidopsis: a gene critical in male meiosis. Plant J. 15:345–356

    Article  PubMed  CAS  Google Scholar 

  • Goetz M, Godt DE, Guivarc’h A, Kahmann U, Chriqui D, T. R (2001) Induction of male sterility in plants by metabolic engineering of the carbohydrate supply. Proc Natl Acad Sci USA 98:6522–6527

    PubMed  CAS  Google Scholar 

  • Goff SA, Crossland LD, Privalle LS (1999) Control of gene expression in plants by receptor mediated transactivation in the presence of a chemical ligand. US patent number 5880333

    Google Scholar 

  • Goldberg RB, Beals TP, Sanders PM (1993) Anther development: basic principles and practical applications. Plant Cell 5:1217–1229

    PubMed  CAS  Google Scholar 

  • Gomez-Casati D, Busi MV, Gonzalez-Schain N, Mouras A, Zabaleta EJ, Araya A (2002) A mitochondrial dysfunction induces the expression of nuclear-encoded complex I genes in engineered male sterile Arabidopsis thaliana. FEBS Lett 532:70–74

    PubMed  CAS  Google Scholar 

  • Hanson M (1991) Plant mitochondrial mutations and male sterility. Annu Rev Genet 25:461–486

    Article  PubMed  CAS  Google Scholar 

  • Hanson MR, Conde MF (1985) Function and variation of cytoplasmic genomes: lessons from cytoplasmic-nuclear interactions affecting male sterility in plants. Int Rev Cytol 94:213–267

    CAS  Google Scholar 

  • He S, Abad AR, Gelvin SB, Mackenzie SA (1996) A cytoplasmic male sterility-associated mitochondrial protein causes pollen disruption in transgenic tobacco. Proc Natl Acad Sci USA 93:11763–11768

    PubMed  CAS  Google Scholar 

  • He YQ, Yang J, Xu CG, Zhang ZG, Zhang Q (1999) Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice. Theor Appl Genet 99:683–693

    Article  CAS  Google Scholar 

  • Hernould M, Suharsono S, Litvak S, Araya A, Mouras A (1993) Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci USA 90:2370–2374

    PubMed  CAS  Google Scholar 

  • Hernould M, Suharsono, Zabaleta E, Carde JP, Litvak S, Araya A, Mouras A (1998) Impairment of tapetum and mitochondria in engineered male-sterile tobacco plants. Plant Mol Biol 36:499–508

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Cerny RE, Qi Y, Bhat D, Aydt CM, Hanson DD, Malloy KP, Ness LA (2003) Transgenic studies on the involvement of cytokinin and gibberellin in male development. Plant Physiol 131:1270–1282

    Article  PubMed  CAS  Google Scholar 

  • Jan CC, Rutger JN (1988) Mitomycin C-and streptomycin-induced male sterility in cultivated sunflower. Crop Science Madison: Crop Science Society of America 28:792–795

    CAS  Google Scholar 

  • Kadowaki K, Osumi T, Nemoto H, Harada K, Shinjyo C (1988) Mitochondrial DNA polymorphism in male-sterile cytoplasm of rice. Theor Appl Genet 75:234–236

    Article  CAS  Google Scholar 

  • Kempken F, Pring DR (1999) Male sterility in higher plants-fundamentals and applications. Prog Bot 60:139–166

    CAS  Google Scholar 

  • Koltunow AM, Truettner J, Cox KH, Wallroth M, Goldberg RB (1990) Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2:1201–1224

    Article  PubMed  CAS  Google Scholar 

  • Kriete G, Niehaus K, Perlick AM, Pühler A, Broer I (1996) Male sterility in transgenic tobacco plants induced by tapetum-specific deacetylation of the externally applied non-toxic compound N-acetyl-L-phosphinothricin. Plant J 9:809–818

    Article  PubMed  CAS  Google Scholar 

  • Laughnan JR, Gabay-Laughnan S (1983) Cytoplasmic male sterility in maize. Annu Rev Genet 17:27–48

    Article  PubMed  CAS  Google Scholar 

  • Lefort-Buson M, Guillot-Lemoine B, Datté Y (1987) Heterosis and genetic distance in rapeseed (Brassica napus L): crosses between European and Asiatic selfed lines. Genome 29:413–418

    Google Scholar 

  • Levings CS III (1990) The Texas cytoplasm of maize: cytoplasmic male sterility and disease susceptibility. Science 250:942–947

    CAS  PubMed  Google Scholar 

  • Luo H, Lyznik LA, Gidoni D, Hodges TK (2000) FLP-mediated recombination for use in hybrid plant production. Plant J 23:423–430

    Article  PubMed  CAS  Google Scholar 

  • Mariani C, de Beuckeleer M, Truettner J, Leemans J, Goldberg RB (1990) Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347:737–741.

    Article  CAS  Google Scholar 

  • Mariani C, Gossele V, De Beuckeleer M, De Block M, Goldberg RB, De Greef W, Leemans J (1992) A chimaeric ribonuclease-inhibitor gene restores fertility to male sterile plants. Nature 357:384–387

    Article  CAS  Google Scholar 

  • McConn M, Browse J (1996) The critical requirement for linoleic acid in pollen development, not photosynthesis, in an Arabidopsis mutant. Plant Cell 8:403–416

    Article  PubMed  CAS  Google Scholar 

  • Paddon CJ, Vasantha N, Hartley RW (1989) Translation and processing of Bacillus amyloliquefaciens extracellular RNase. J Bacteriol 171:1185–1187

    PubMed  CAS  Google Scholar 

  • Perez-Prat E, van Lookeren Campagne MM (2002) Hybrid seed production and the challenge of propagating male-sterile plants. Trends Plant Science 7:199–203

    CAS  Google Scholar 

  • Pring DR, Tang HV, Schertz KF (1995) Cytoplasmic male sterility and organelle DNAs of sorghum. In: Levings CS III, Vasil IK (eds) The molecular biology of plant mitochondria. Kluwer Academic Publishers, Dordrecht, pp 461–495

    Google Scholar 

  • Schnable PS, Wise RP (1998) The molecular basis of cytoplasmic male sterility and fertility restoration. Trends Plant Science 3:175–180

    Article  Google Scholar 

  • Sun ZX, Min SK, Xiong ZM (1989) A temperature-sensitive male sterile line found in rice. Rice Genet Newslett 6:116–117

    Google Scholar 

  • van der Meer IM, Stam ME, van Tunen AJ, Mol JNM, Stuitje AR (1992) Antisense inhibition of flavonoid biosynthesis in petunia anthers results in male sterility. Plant Cell 4:253–262

    PubMed  Google Scholar 

  • Wise RP, Pring DR, Gengenbach BG (1987) Mutation to male fertility and toxin insensitivity in T-cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA 84:2858–2862

    CAS  PubMed  Google Scholar 

  • Worrall D, Hird DL, Hodge R, Wyatt P, Draper J, Scott R (1992) Premature dissolution of the microsporocyte callose wall causes male sterility in transgenic tobacco. Plant Cell 4:759–771

    Article  PubMed  CAS  Google Scholar 

  • Xu GW, Cui YX, Schertz KF, Hart GE (1995a) Isolation of mitochondrial DNA sequences that distinguish male-sterility-inducing cytoplasms in Sorghum bicolor (L.) Moench. Theor Appl Genet 90:1180–1187

    Article  CAS  Google Scholar 

  • Xu H, Knox RB, Taylor PE, Singh MB (1995b) Bcp1, a gene required for male fertility in Arabidopsis. Proc Natl Acad Sci USA 92:2106–2110

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stockmeyer, K., Kempken, F. (2006). Biotechnology: Engineered male sterility in plant hybrid breeding. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27998-9_8

Download citation

Publish with us

Policies and ethics