Skip to main content

Atmospheric carbon dioxide enrichment effects on ecosystems — experiments and the real world

  • Chapter
Progress in Botany

Part of the book series: Progress in Botany ((BOTANY,volume 67))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ainsworth EA, Long SP (2005) What have we learned from 15 years of free-air CO2 enrichment? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytol 165:351–372

    Article  PubMed  Google Scholar 

  • Allen LH, Drake BG, Rogers HH, Shinn JH (1992) Field techniques for exposure of plants and ecosystems to elevated CO2 and other trace gases. In: Hendrey GR (ed) FACE: free-air CO2 enrichment for plant research in the field. CRC Press, Boca Raton, Fla., pp 85–119

    Google Scholar 

  • Amthor JS (1995) Terrestrial higher-plant response to increasing atmospheric [CO2] in relation to the global carbon cycle. Global Change Biol 1:243–274

    Google Scholar 

  • Amthor JS (2001) Effects of atmospheric CO2 concentration on wheat yield: review of results from experiments using various approaches to control CO2 concentration. Field Crops Res 73:1–34

    Article  Google Scholar 

  • Arp WJ (1991) Effects of source-sink relations on photosynthetic acclimation to elevated CO2. Plant Cell Environ 14:869–875

    CAS  Google Scholar 

  • Bazzaz FA (1990) The response of natural ecosystems to the rising global CO2 levels. Annu Rev Ecol Syst 21:167–196

    Article  Google Scholar 

  • Bazzaz FA, Catovsky S (2002) Plant Competition in an elevated CO2 world. In: Mooney HA, Canadell J (eds) Encyclopaedia of global environmental change. Wiley, Chichester, pp 471–481

    Google Scholar 

  • Bowes G (1996) Photosynthetic responses to changing atmospheric carbon dioxide concentrations. In: Baker NR (ed) Photosynthesis and the Environment. Kluwer, Dordrecht, pp 387–407

    Google Scholar 

  • Bunce J (2003) Responses of seedling growth to daytime or continuous elevation of carbon dioxide. Int J Plant Sci 164:377–382

    Article  Google Scholar 

  • Caemmerer S von, Farquhar GD (1981) Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 153:376–387

    Article  Google Scholar 

  • Chiariello NR, Field CB (1996) Annual grassland responses to elevated CO2 in multiyear community microcosms. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, Calif., pp 139–157

    Google Scholar 

  • Cotrufo MF, Ineson P, Scott A. (1998) Elevated CO2 reduces the nitrogen concentration of plant tissues. Global Change Biol 4:43–54

    Article  Google Scholar 

  • Cure JD, Acock B (1986) Crop response to carbon dioxide doubling: a literature survey. Agric For Meteorol 38:127–145

    Article  Google Scholar 

  • Curtis PS, Wang XZ (1998) A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology. Oecologia 113:299–313

    Article  Google Scholar 

  • De Temmerman L, Fangmeier A., Craigon J (2002) EU project: Changing climate and potential impacts on potato yield and quality (CHIP). Eur J Agron 17:231–381

    Google Scholar 

  • Drake BG, Gonzàlez-Meler MA, Long SP (1997) More efficient plants: a consequence of rising atmospheric CO2? Annu Rev Plant Physiol 48:609–639

    CAS  Google Scholar 

  • Drake BG, Azcon-Bieto J, Berry J, Bunce J, Dijkstra P, Farrar J, Gifford RM, Gonzalez-Meler MA, Koch G, Lambers H, Siedow J, Wullschleger S (1999) Does elevated atmospheric CO2 concentration inhibit mitochondrial respiration in green plants? Plant Cell Environ 22:649–657

    Article  CAS  Google Scholar 

  • Erbs M, Fangmeier A (2005) A chamberless field exposure system for ozone enrichment of short vegetation. Environ Pollut 133:91–102

    Article  PubMed  CAS  Google Scholar 

  • Fangmeier A, Jäger H-J (2001) Wirkungen erhöhter CO2-Konzentrationen. In: Guderian R (ed) Handbuch der Umweltveränderungen und Ökotoxikologie, vol 2A: Terrestrische Ökosysteme. Springer, Berlin Heidelberg New York, pp 382–433

    Google Scholar 

  • Fangmeier A, Stein W, Jäger H-J (1992) Advantages of an open-top chamber plant exposure system to assess the impact of atmospheric trace gases on vegetation. Angew Bot 66:97–105

    CAS  Google Scholar 

  • Fangmeier A, Chrost B, Högy P, Krupinska K (2000) CO2 enrichment enhances flag leaf senescence in barley due to greater grain nitrogen sink capacity. Environ Exp Bot 44:151–164

    Article  PubMed  CAS  Google Scholar 

  • Field CB, Chapin FS, Matson PA, Mooney HA (1992) Responses of terrestrial ecosystems to the changing atmosphere: A resource-based approach. Annu Rev Ecol Syst 23:201–235

    Article  Google Scholar 

  • Hättenschwiler S, Handa IT, Egli L, Asshoff R, Ammann W, Körner C (2002) Atmospheric CO2 enrichment of alpine treeline conifers. New Phytol 156:363–375

    Google Scholar 

  • Heagle AS, Body DE, Heck WW (1973) An open-top field chamber to asses the impact of air pollutant on plants. J Environ Qual 2:365–368

    Article  CAS  Google Scholar 

  • Heagle AS, Philbeck RB, Ferrell RE, Heck WW (1989) Design and performance of a large, field exposure chamber to measure effects of air quality on plants. J Environ Qual 18:361–368

    Article  CAS  Google Scholar 

  • Heck WW, Philbeck RB, Dunning JA (1978) A continuous stirred tank reactor (CSTR) system for exposing plants to gaseous air contaminants: principles, specifications, construction, and operation. US Department of Agriculture, New Orleans, La., pp 1–32

    Google Scholar 

  • Hendrey GR, Ellsworth DS, Lewin KF, Nagy J (1999) A free-air enrichment system for exposing tall forest vegetation to elevated atmospheric CO2. Global Change Biol 5:293–309

    Article  Google Scholar 

  • Hendrey GR, Kimball B (1990) FACE: Free-air carbon dioxide enrichment. In: DOE FACE project brochure, application to field-grown cotton. National Technical Information Service, U.S. Department of Commerce, Springfield, Mass., pp 1–17

    Google Scholar 

  • Hendrey GR, Long SP, McKee IF, Baker NR (1997) Can photosynthesis respond to short-term fluctuations in atmospheric carbon dioxide? Photosynth Res 51:179–184

    Article  CAS  Google Scholar 

  • Holtum JAM, Winter K (2003) Photosynthetic CO2 uptake in seedlings of two tropical tree species exposed to oscillating elevated concentrations of CO2. Planta 218:152–158

    Article  PubMed  CAS  Google Scholar 

  • IPCC (2001) Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge

    Google Scholar 

  • Isebrands JG, McDonald EP, Kruger E, Hendrey G, Percy K, Pregitzer K, Sober J, Karnosky DF (2001) Growth responses of Populus tremuloides clones to interacting elevated carbon dioxide and tropospheric ozone. Environ Pollut 115:359–371

    Article  CAS  Google Scholar 

  • Jablonski LM, Wang X, Curtis PS (2002) Plant reproduction under elevated CO2 conditions: a meta-analysis of reports on 79 crop and wild species. New Phytol 156:9–26

    Article  Google Scholar 

  • Jäger H-J, Schmidt SW, Kammann C, Grünhage L, Müller C, Hanewald K (2003) The University of Giessen free-air carbon dioxide enrichment study: description of the experimental site and of a new enrichment system. J Appl BotAngew Bot 77:117–127

    Google Scholar 

  • Karnosky DF, Gielen B, Ceulemans R, Schlesinger WH, Norby RJ, Oksanen E, Matyssek R, Hendrey GR (2001) FACE Systems for studying the impacts of greenhouse gases on forest ecosystems. In: Karnosky DF, Ceulemans R, Scarascia-Mugnozza G, Innes JL (eds) The impact of carbon dioxide and other greenhouse gases on forest ecosystems. CABI, Oxford, pp 297–324

    Google Scholar 

  • Kimball BA (1983) Carbon dioxide and agricultural yield: an assemblage and analysis of 430 prior observations. Agron J 75:779–788

    Article  Google Scholar 

  • Kimball BA, Mauney JR, Nakayama FS, Idso SB (1993) Effects of increasing atmospheric CO2 on vegetation. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer, Dordrecht, pp 65–75

    Google Scholar 

  • Koch GW, Mooney HA (1996) Response of terrestrial ecosystems to elevated CO2: A synthesis and summary, In: Koch GW, Mooney HA (eds) Carbon dioxide and terrestrial ecosystems. Academic Press, San Diego, Calif., pp 415–429

    Google Scholar 

  • Körner C (2000) Biosphere response to CO2 enrichment. Ecol Appl 10:1590–1619

    Google Scholar 

  • Leadley PW, Niklaus P, Stocker R, Körner C (1997) Screen-aided CO2 control (SACC): a middle ground between FACE and open-top chambers. Acta Oecol Oecol Plant 18:207–219

    Google Scholar 

  • Lee HSJ, Barton CVM (1993) Comparative studies on elevated CO2 using open-top chambers, tree chambers and branch bags. In: Schulze ED, Mooney HA (eds) Design and execution of experiments on CO2 enrichment. Commission of the European Communities, Brussels, pp 239–259

    Google Scholar 

  • Lockyer DR, Cowling DW, Jones LHP (1976) A system for exposing plants to atmospheres containing low concentrations of sulphur dioxide. J Exp Bot 27:397–409

    CAS  Google Scholar 

  • Long SP, Ainsworth EA, Rogers A, Ort DR (2004) Rising atmospheric carbon dioxide: plants FACE the future. Annu Rev Plant Biol 55:591–628

    Article  PubMed  CAS  Google Scholar 

  • Lundegårdh H (1927) Carbon dioxide evolution of soil and crop growth. Soil Sci 23:417–453

    Google Scholar 

  • Mandl RH, Weinstein LH, McCune DC, Keveny M (1973) A cylindrical, open-top chamber for the exposure of plants to air pollutants in the field. J Environ Qual 2:371–376

    Article  CAS  Google Scholar 

  • McLeod AR, Long SP (1999) Free-air carbon dioxide enrichment (FACE) in global change research: a review. Adv Ecol Res 28:1–56

    CAS  Google Scholar 

  • Miglietta F, Giuntoli A, Bindi M (1996) The effect of free air carbon dioxide enrichment (FACE) and soil nitrogen availability on the photosynthetic capacity of wheat. Photosyn Res 47:281–290

    CAS  Google Scholar 

  • Miglietta F, Lanini M, Bindi M, Magliulo V (1997) Free air CO2 enrichment of potato (Solanu m tuberosum, L.): design and performance of the CO2-fumigation system. Global Change Biol 3:417–427

    Article  Google Scholar 

  • Miglietta F, Hoosbeek MR, Foot J, Gigon F, Hassinen A, Heijmans M, Peressotti A, Saarinen T, Van Breemen N, Wallen B (2001a) Spatial and temporal performance of the miniFACE (free air CO2 enrichment) system on bog ecosystems in northern and central Europe. Environ Monit Assess 66:107–127

    Article  PubMed  CAS  Google Scholar 

  • Miglietta F, Peressotti A, Vaccari FP, Zaldei A, DeAngelis P, Scarascia-Mugnozza G (2001b) Free-air CO2 enrichment (FACE) of a poplar plantation: the POPFACE fumigation system. New Phytol 150:465–476

    Article  Google Scholar 

  • Mooney HA, Canadell J, Chapin JR, Ehleringer JR, Körner C, McMurtrie RE, Parton WJ, Schulze ED (1999) Ecosystem physiology responses to global change. In: Walker B, Steffen W, Canadell J, Ingram J (eds) The terrestrial biosphere and global change. Cambridge University Press, Cambridge, pp 141–189

    Google Scholar 

  • Nagy J, Lewin KF, Hendrey GR, Lipfert FW, Daum ML (1992) FACE facility engineering performance in 1989. Crit Rev Plant Sci 11:165–185

    Google Scholar 

  • Norby RJ, Kobayashi K, Kimball BA (2001) Rising CO2 — future ecosystems-commentary. New Phytol 150:215–221

    Google Scholar 

  • Nowak RS, Ellsworth DS, Smith SD (2004) Functional responses of plants to elevated atmospheric CO2 — do photosynthetic and productivity data from FACE experiments support early predictions? New Phytol 162:253–280

    Article  Google Scholar 

  • Okada M, Lieffering M, Nakamura H, Yoshimoto M, Kim HY, Kobayashi K (2001) Free-air CO2 enrichment (FACE) using pure CO2 injection: system description. New Phytol 150:251–260

    Article  Google Scholar 

  • Pinter PJ, Kimball BA, Wall GW, Lamorte RL, Hunsaker DJ, Adamsen FJ, Frumau KFA, Vugts HF, Hendrey GR, Lewin KF, Nagy J, Johnson HB, Wechsunge F, Leavitt SW, Thompson TL, Matthias AD, Brooks TJ (2000) Free-air CO2 enrichment (FACE): blower effects on wheat canopy microclimate and plant development. Agric For Meteorol 103:319–333

    Article  Google Scholar 

  • Poorter H (1993) Interspecific variation in the growth response of plants to an elevated ambient CO2 concentration. In: Rozema J, Lambers H, Van de Geijn SC, Cambridge ML (eds) CO2 and biosphere. Kluwer, Dordrecht, pp 77–97

    Google Scholar 

  • Poorter H, Navas ML (2003) Plant growth and competition at elevated CO2: on winners, losers and functional groups. New Phytol 157:175–198

    Article  Google Scholar 

  • Poorter H, Roumet C, Campbell BD (1996) Interspecific variation in the growth response of plants to elevated CO2: a search for functional types. In: Körner C, Bazzaz FA (eds) Carbon dioxide, populations, and communities. Academic Press, San Diego, Calif. pp 375–412

    Google Scholar 

  • Rogers HH, Heck WW, Heagle AS (1983) A field technique for the study of plant responses to elevated carbon dioxide concentration. J Air Pollut Contr Assoc 33:42–44

    CAS  Google Scholar 

  • Sage RF (1994) Acclimation of photosynthesis to increasing atmospheric CO2: the gas exchange perspective. Photosynth Res 39:351–368

    Article  CAS  Google Scholar 

  • Shinn JH, Clegg BR, Stuart ML (1977) A linear gradient chamber for exposing field plants to controlled levels of air pollutants. UCRL reprint no. 80411. Lawrence Livermore Laboratory, University of California, Calif.

    Google Scholar 

  • Spring GM, Priestman GH, Grime JP (1996) A new field technique for elevating carbon dioxide levels in climate change experiments. Funct Ecol 10:541–545

    Google Scholar 

  • Stitt M (1996) Metabolic regulation of photosynthesis. In: Baker NR (ed) Photosynthesis and the environment. Kluwer, Dordrecht, pp 151–190

    Google Scholar 

  • Van Oijen M, Schapendonk AH, Jansen MJ, Pot CS, Maciorowski R (1999) Do open-top chambers overestimate the effects of rising CO2 on plants? An analysis using spring wheat. Global Change Biol 5:411–421

    Google Scholar 

  • Volk M, Geissmann M, Blatter A, Contat F, Fuhrer J (2003) Design and performance of a free-air exposure system to study long-term effects of ozone on grasslands. Atmos Environ 37:1341–1350

    Article  CAS  Google Scholar 

  • Walklate PJ, Xu ZG, McLeod AR (1996) A new gas injection method to enhance spatial utilization within a free-air CO2 enrichment (FACE) system. Global Change Biol 2:75–78

    Google Scholar 

  • Wand SJE, Midgley GF, Jones MH, Curtis PS (1999) Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biol 5:723–741

    Article  Google Scholar 

  • Webber AN, Nie GY, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39:413–425

    Article  CAS  Google Scholar 

  • Weltzin JF, Belote RT, Sanders NJ (2003) Biological invaders in a greenhouse world: will elevated CO2 fuel plant invasions? Front Ecol Environ 1:146–153

    Google Scholar 

  • Wittwer SH (1986) Worldwide status and history of CO2 enrichment — an overview. In: Enoch HZ, Kimball BA (eds) Carbon dioxide enrichment of greenhouse crops. CRC, Boca Raton, Fla., pp 3–15

    Google Scholar 

  • Wullschleger SD, Tschaplinski TJ, Norby RJ (2002) Plant water relations at elevated CO2 — implications for water-limited environments. Plant Cell Environ 25:319–331

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Erbs, M., Fangmeier, A. (2006). Atmospheric carbon dioxide enrichment effects on ecosystems — experiments and the real world. In: Esser, K., Lüttge, U., Beyschlag, W., Murata, J. (eds) Progress in Botany. Progress in Botany, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27998-9_19

Download citation

Publish with us

Policies and ethics