A Homological Approach

Part of the Universitext book series (UTX)


Homology Group Cohomology Class Central Extension Inverse System Elementary Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes and Comments on Chap. 4

  1. 1.
    Adem, A., Karoubi, M.: Periodic cyclic cohomology of group rings. C. R. Acad. Sci. Paris Ser. I Math. 326, 13–17 (1998)MathSciNetGoogle Scholar
  2. 10.
    Burghelea, D.: The cyclic homology of the group rings. Comment. Math. Helv. 60, 354–365 (1985)MathSciNetzbMATHGoogle Scholar
  3. 11.
    Chadha, G.K., Passi, I.B.S.: Centralizers and homological dimension. Comm. Alg. 22(14), 5703–5708 (1994)MathSciNetGoogle Scholar
  4. 15.
    Connes, A.: Non-commutative differential geometry. Publ. Math. IHES 62, 41–144 (1985)zbMATHGoogle Scholar
  5. 19.
    Eckmann, B.: Cyclic homology of groups and the Bass conjecture. Comment. Math. Helv. 61, 193–202 (1986)MathSciNetzbMATHGoogle Scholar
  6. 22.
    Emmanouil, I.: On a class of groups satisfying Bass’ conjecture. Invent. Math. 132, 307–330 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 27.
    Emmanouil, I., Passi, I.B.S.: A contribution to Bass’ conjecture. J. Group Theory 7, 409–429 (2004)MathSciNetGoogle Scholar
  8. 35.
    Ji, R.: Nilpotency of Connes’ periodicity operator and the idempotent conjectures. K-Theory 9, 59–76 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 40.
    Karoubi, M., Villamayor, O.: Homologie cyclique d’algèbres de groupes. C.R. Acad. Sci. Paris 311, 1–3 (1990)MathSciNetGoogle Scholar
  10. 44.
    Loday, J.L.: Cyclic homology. (Grundl. Math. Wiss. 301) Berlin Heidelberg New York: Springer 1992Google Scholar
  11. 45.
    Loday J.L., Quillen, D.: Cyclic homology and the Lie algebra homology of matrices. Comment. Math. Helv. 59, 565–591 (1984)MathSciNetGoogle Scholar
  12. 47.
    Mac Carthy, R.: Morita equivalence and cyclic homology. C.R. Acad. Sci. Paris 307, 211–215 (1988)Google Scholar
  13. 50.
    Marciniak, Z.: Cyclic homology and idempotents in group rings. Springer Lect. Notes in Math. 1217, 253–257 (1985)MathSciNetGoogle Scholar
  14. 51.
    Marciniak, Z.: Cyclic homology of group rings. Banach Center Publications 18, 305–312 (1986)MathSciNetzbMATHGoogle Scholar
  15. 63.
    Schafer, J.A.: Relative cyclic homology and the Bass conjecture. Comment. Math. Helv. 67, 214–225 (1992)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Personalised recommendations