Skip to main content

Theory of carrier lifetime in silicon

  • Chapter

Part of the book series: Springer Series in Material Science ((SSMATERIALS,volume 85))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Shockley and W.T.J. Read, Statistics of the recombinations of holes and electrons, Phys. Rev. 87(5), 835–42 (1952).

    Article  ADS  MATH  Google Scholar 

  2. R.N. Hall, Electron-hole recombination in germanium, Phys. Rev. 87, 387 (1952).

    Article  ADS  Google Scholar 

  3. D. Macdonald and A. Cuevas, Validity of simplified Shockley-Read-Hall statistics for modeling carrier lifetimes in crystalline silicon, Phys. Rev. B (Condensed Matter and Materials Physics) 67(7), 75203-1–7 (2003).

    Article  ADS  Google Scholar 

  4. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley & Sons, New York, 1981).

    Google Scholar 

  5. A.B. Sproul and M.A. Green, Improved value for the silicon intrinsic carrier concentration from 275 to 375 K, J. Appl. Phys. 70(2), 846–54 (1991).

    Article  ADS  Google Scholar 

  6. D.A. Clugston and P.A. Basore, PC1D version 5: 32-bit solar cell modeling on personal computers, Proc. 26th IEEE PVSC (Anaheim, California, USA, 1997), pp. 207–10.

    Google Scholar 

  7. N.W. Ashcroft and N.D. Mermin, Solid State Physics, International Edition (Saunders College Publishing, New York, 1976).

    Google Scholar 

  8. M.A. Green, Intrinsic concentration, effective densities of states, and effective mass in silicon, J. Appl. Phys. 67(6), 2944–54 (1990).

    Article  ADS  Google Scholar 

  9. M.A. Green, Silicon Solar Cells: Advanced Principles and Practice (Center for Photovoltaic Devices and Systems, University of New South Wales, Sydney, 1995).

    Google Scholar 

  10. ISE Integrated Systems Engineering AG, DESSIS Manual 7.0 (Zürich, 2001).

    Google Scholar 

  11. R.J. Nelson and R.G. Sobers, Minority-carrier lifetime and internal quantum efficiency of surface-free GaAs, J. Appl. Phys. 49, 577 (1978).

    Google Scholar 

  12. A. Hangleiter and R. Häcker, Enhancement of band-to-band Auger recombination by electron-hole correlations, Phys. Rev. Lett. 65(2), 215–18 (1990).

    Article  ADS  Google Scholar 

  13. P.T. Landsberg, Recombination in Semiconductors (Cambridge University Press, 1991).

    Google Scholar 

  14. A.R. Beatti and P.T. Landsberg, Auger effect in semiconductors, Proc. Royal Soc. A 429, 16 (1958).

    Google Scholar 

  15. J. Dziewior and W. Schmid, Auger coefficients for highly doped and highly excited silicon, Appl. Phys. Lett. 31(5), 346–8 (1977).

    Article  ADS  Google Scholar 

  16. S. Rein, Untersuchung der Degradation der Ladungsträgerlebensdauer in Cz-Silizium, Diplomarbeit, Albert-Ludwigs-Universität Freiburg (1998).

    Google Scholar 

  17. M.J. Kerr, Surface, emitter and bulk recombination in silicon and development of silicon nitride passivated solar cells, PhD thesis, Australien National University (2002).

    Google Scholar 

  18. P. Jonsson, H. Bleichner, M. Isberg, and E. Nordlander, The ambipolar Auger coefficient: Measured temperature dependence in electron irradiated and highly injected n-type silicon, J. Appl. Phys. 81(5), 2256–62 (1997).

    Article  ADS  Google Scholar 

  19. A. Hangleiter and R. Häcker, Excitonic band-to-band Auger recombination in silicon, Proc. 18th International Conf. on the Physics of Semiconductors (1987), p. 907.

    Google Scholar 

  20. R. Häcker and A. Hangleiter, Intrinsic upper limits of the carrier lifetime in silicon, J. Appl. Phys. 75, 7570 (1994).

    Article  ADS  Google Scholar 

  21. P.P. Altermatt, J. Schmidt, G. Heiser, and A.G. Aberle, Assessment and parameterization of Coulomb-enhanced Auger recombination coefficients in lowly injected crystalline silicon, J. Appl. Phys. 82(10), 4938–44 (1997).

    Article  ADS  Google Scholar 

  22. R.A. Sinton and R.M. Swanson, Recombination in highly injected silicon, IEEE Trans. Electron Devices 34(6), 1380 (1987).

    Article  Google Scholar 

  23. P.A. Basore and D.A. Clugston, PC1D version 4 for Windows: from analysis to design, Proc. 25th IEEE PVSC (Washington D C, 1996), pp. 377–81.

    Google Scholar 

  24. S.W. Glunz, D. Biro, S. Rein, and W. Warta, Field-effect passivation of the SiO 2 —Si interface, J. Appl. Phys. 86(1), 683–91 (1999).

    Article  ADS  Google Scholar 

  25. P.P. Altermatt, J. Schmidt, M. Kerr, G. Heiser, et al., Exciton-enhanced Auger recombination in crystalline silicon under intermediate and high injection conditions, Proc. 16th EC PVSEC (Glasgow, UK, 2000), pp. 243–6.

    Google Scholar 

  26. D.K. Schroder, Semiconductor Material and Device Characterization (John Wiley & Sons, New York, 1990).

    Google Scholar 

  27. A. Schlachetzki, Halbleiter-Elektronik (Teubner, Stuttgart, 1990).

    Google Scholar 

  28. D. Macdonald, Classification of trapping effects, personal communication (2003).

    Google Scholar 

  29. D. Macdonald and A. Cuevas, Trapping of minority carriers in multicrystalline silicon, Appl. Phys. Lett. 74(12), 1710–12 (1999).

    Article  ADS  Google Scholar 

  30. D. Macdonald, R.A. Sinton, and A. Cuevas, On the use of a bias-light correction for trapping effects in photoconductance-based lifetime measurements of silicon, J. Appl. Phys. 89(5), 2772–8 (2001).

    Article  ADS  Google Scholar 

  31. R.B.M. Girisch, R.P. Mertens, and R.F. De Keersmaecker, Determination of Si—SiO 2 interface recombination parameters using a gate-controlled pointjunction diode under illumination, IEEE Trans. Electron Devices 35(2), 203–22 (1988).

    Article  ADS  Google Scholar 

  32. A.G. Aberle, Crystalline silicon solar cells — Advanced surface passivation and analysis (University of New South Wales, Sydney, 1999).

    Google Scholar 

  33. A.G. Aberle, S. Glunz, and W. Warta, Impact of illumination level and oxide parameters on Shockley-Read-Hall recombination at the Si—SiO 2 interface, J. Appl. Phys. 71(9), 4422–31 (1992).

    Article  ADS  Google Scholar 

  34. A.G. Aberle, Overview on SiN surface passivation of crystalline silicon solar cells, Sol. Ener. Mater. Sol. Cells 65, 239–48 (2001).

    Article  Google Scholar 

  35. A.B. Sproul, Dimensionless solution of the equation describing the effect of surface recombination on carrier decay in semiconductors, J. Appl. Phys. 76(5), 2851–4 (1994).

    Article  ADS  Google Scholar 

  36. V. Grivickas, D. Noreika, and J.A. Tellesfen, Surface and Auger recombination in silicon wafers of high carrier density, Lithuanian Physics Journal 29(5), 48–53 (1989).

    Google Scholar 

  37. J. Schmidt and A.G. Aberle, Accurate method for the determination of bulk minority-carrier lifetimes of mono-and multicrystalline silicon wafers, J. Appl. Phys. 81(9), 6186–99 (1997).

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Theory of carrier lifetime in silicon. In: Lifetime Spectroscopy. Springer Series in Material Science, vol 85. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27922-9_2

Download citation

Publish with us

Policies and ethics