Skip to main content
  • 1490 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

L.5.1

  • Sandwell DT, Smith WHF (1995) Marine gravity from satellite altimetry (poster). The Geological Data Center, Scripps Inst. of Oceanography, La Jolla, CA 92093, (digital file, Version 7.2), anonymous ftp to baltica.ucsd.edu

    Google Scholar 

  • Sandwell DT, Smith WHF (1997) Marine gravity anomaly from Geosat and ERS-1 altimetry. J Geophys Res 102: 10039–10054

    Article  Google Scholar 

  • Smith WHF, Sandwell DT (1994) Bathymetric prediction from dense altimetry and sparse shipboard bathymetry. J Geophys Res 99:21803–21824

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship depth soundings. Science 277:1957–1962

    Google Scholar 

L.5.1.2

  • Bacon CR, Gardner JV, Mayer LA, Buktenica M (2002) Morphology, volcanism, and mass wasting in Crater Lake, Oregon. Geol Soc Am Bull 114:675–692

    Article  Google Scholar 

  • Gardner JV, Mayer LA, Hughes-Clarke JE (1998) North Maui and Pailolo, Auau, and Kealaikahiku Channels (Maui, Molokai, Lanai, and Kohoolawe, Hawaii): a high-resolution multibeam survey. Abs. American Geophysical Union Fall Mtg, p F827

    Google Scholar 

  • Gardner JV, Mayer LA, Hughes-Clarke JE, Kleiner A (1999) High-resolution multibeam bathymetry of East and West Flower Gardens and Stetson Banks, Gulf of Mexico. Gulf of Mexico Science 16:131–143

    Google Scholar 

  • Gardner JV, Mayer LA, Hughes-Clarke JE (2000) Morphology and processes in Lake Tahoe (California-Nevada). Geol Soc Amer Bull 112:736–746

    Article  Google Scholar 

  • Gardner JV, Dartnell P, Sulak KJ, Calder B, Hellequin L (2001a) Physiography and Late Quaternary-Holocene processes of northeastern Gulf of Mexico outer continental shelf off Mississippi and Alabama. Gulf Of Mexico Science 19:132–157

    Google Scholar 

  • Gardner JV, van den Ameele EJ, Gelfenbaum G, Barnhardt W, Lee H, Palmer S (2001b) Mapping southern Puget Sound delta fronts after the 2001 Nisqually earthquake. EOS 82(42):485–489

    Google Scholar 

  • Marlow MS, Gardner JV, Normark WR (2000) Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore southern California. Geology 28:587–590

    Article  ISI  Google Scholar 

L.5.2.1

  • Caress DW, Chase DN (1996) Improved processing of Hydrosweep DS multibeam data on the RV Maurice Ewing. Mar Geophys Res 18:631–650

    Article  Google Scholar 

  • Flueh ER, Vidal N, Ranero CR, Hojka A, von Huene R, Bialas J, Hinz K, Cordoba D, Dañobeitia JJ, Zelt C (1998) Seismic investigation of the continental margin off and onshore Valparaiso, Chile. Tectonophysics 288:251–263

    Article  ISI  Google Scholar 

  • Fruehn J, von Huene R, Fisher M (1999) Accretion in the wake of terrane collision: the Neogene accretionary wedge off Kenai Peninsula, Alaska. Tectonics 18:263–277

    Article  ISI  Google Scholar 

  • Gung Y, Panning M, Romanowicz B (2003) Global anisotropy and the thickness of continents. Nature 422:707–711

    Article  ISI  Google Scholar 

  • Howell DG (1989) Tectonics of suspect terranes, mountain building and continental growth. Chapman and Hall, London, 232 pp

    Google Scholar 

  • Le Pichon X, Henry P, Lallemant S (1993) Accretion and erosion in subduction zones: the role of fluids. Annu Rev Earth Pl Sc 21:307–331

    Google Scholar 

  • Moore JC, Vrolijk (1992) Fluids in accretionary prisms. Rev Geophys 30:113–135

    Google Scholar 

  • Parsons B (1981) The rates of plates creations and comsumption. Geophys J R Astron Soc 67:437–448

    Google Scholar 

  • Ranero CR, Von Huene R (2000) Subduction erosion along the Middle America convergent margin. Nature 404:748–752

    Article  ISI  Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77

    ISI  Google Scholar 

  • von Huene R, Ranero CR (2003) Subduction erosion and basal friction along the sediment starved convergent margin off Antofagasta Chile. J Geophys Res 108:2079, doi10.1029/2001JB001569

    Google Scholar 

  • von Huene R, Scholl D (1991) Observations at convergent margins concerning sediment subduction, subduction erosion, and the growth of continental crust. Rev Geophys 29:279–316

    Google Scholar 

  • von Huene R, Corvalan J, Flueh ER, Hinz K, Korstgard J, Ranero CR, Weinrebe W, CONDOR Scientists (1997) Tectonic control of the subducting Juan Fernández Ridge on the Andean margin near Valparaiso, Chile. Tectonics 16:474–488

    Google Scholar 

  • von Huene R, Klaeschen D, Gutscher M, Fruehn J (1998) Mass and fluid flux during accretion at the Alaskan margin. Geol Soc Am Bull 110:468–482

    Google Scholar 

  • Werner R, Hoernle K, van den Bogaard P, Ranero CR, von Huene R, Korich D (1999) Drowned 14 m.y. old Galapagos archipelago off the coast of Costa Rica: implications for tectonic and evolutionary models. Geology 27:499–502

    ISI  Google Scholar 

  • Wessel P, Smith WHF (1998) New improved version of generic mapping tools released. EOS Trans Am Geophys Union U 79(47):579

    Google Scholar 

  • Yáñez GA, Ranero CR, von Huene R, DÍaz J (2001) A tectonic interpretation of magnetic anomalies across a segment of the convergent margin of the Southern Central Andes (32°–34° S). J Geophys Res 106:6325–6345

    Google Scholar 

L.5.2.2

  • Baker N, Fryer P, Martinez F, Yamazaki T (1996) Rifting history of the northern Mariana Trough: SeaMARC II and seismic reflection surveys. J Geophys Res-Solid 101(5): 11427–11455

    Google Scholar 

  • Coffin MF, Karner GD, Falvey DA (1994) Research cruise yields new details of Macquarie Ridge Complex. EOS Trans Am Geophys Union 75:561–564

    Google Scholar 

  • Delteil J, Collot J-Y, Wood R, Herzer R, Calmant S, Christoffel D, Coffin M, Ferriere J, Lamarche G, Lebrun J-F, Mauffret A, Pontoise B, Popoff M, Ruellan E, Sosson M, Sutherland R (1996) From strike-slip faulting to oblique subduction: a survey of the Alpine Fault-Puysegur Trench Transition, New Zealand. Results of Cruise Geodynz-sud Leg 2, Mar Geophys Res 18:383–399

    Google Scholar 

  • Garcia MO, Liu NWK, Muenow DW (1979) Volatiles in submarine volcanic rocks from the Mariana Island arc and trough. Geochim Cosmochim Ac 43:305–312

    Article  Google Scholar 

  • Horibe Y, et al. (1987) PAPATUA Expedition III; Hydrothermal vents in the Mariana Trough and Kagoshima Bay (Sakurajima Volcano). EOS Trans Am Geophys Union 68(7):100

    Google Scholar 

  • Howard AH, Stolper E (1981) Experimental crystallization of boninites from the Mariana Trench. Abstract AGU Fall Meeting. EOS Trans Am Geophys Union 62(45):1091

    Google Scholar 

  • Kato C, Li L, Tamaoka J, Horikoshi K (1997) Molecular analyses of the sediment of the 11000-m deep Mariana Trench. Extremophiles 1:117–123

    ISI  Google Scholar 

  • Massell C, Coffin MF, Mann P, Mosher S, Frohlich C, Schuur CL, Karner G, Ramsay D, Lebrun J-F (2000) Neotectonics of the Macquarie Ridge complex, Pacific-Australia Plate boundary. J Geophys Res 105(B6):13457–13480

    Article  Google Scholar 

  • Schuur CL, Coffin MF, Frohlich C, Massell CG, Karner GD, Ramsay D, Caress DW (1998) Sedimentary regimes at the Macquarie Ridge complex: interaction of Southern Ocean circulation and plate boundary bathymetry. Paleoceanography 13:646–670

    Article  ISI  Google Scholar 

L.5.2.3

  • Bideau D, Hekinian R, Sichler B, Gracia E, Bollinger C, Constantin M, Guivel C (1998) Contrasting volcanic-tectonic processes during the past 2 Ma on the Mid-Atlantic Ridge: submersible mapping, petrological and magnetic results at lat. 34 degrees 52′ N and 33 degrees 55′N. Mar Geophys Res 20(5):425–458

    Article  Google Scholar 

  • Bonatti B, Harrison CGA (1988) Eruption styles of basalts in oceanic spreading ridges and seamounts: effect of magma temperature and viscosity. J Geophys Res 93: 2967–2980

    Google Scholar 

  • Detrick RS, Needham HD, Renard V (1995) Gravity anomalies and crustal thickness variations along the Mid-Atlantic Ridge between 33° N and 40° N. J Geophys Res 100:3767–3787

    Article  Google Scholar 

  • Gràcia E, Parson LM, Bideau D (1998) Volcano-tectonic variability along segments of the Mid-Atlantic Ridge between Azores platform and Hayes fracture zone: evidence from submersible and high-resolution sidescan sonar data. In: Mills RA, Harrison K (eds) Modern ocean floor processes and the geological record. Geol Soc London Spec Publ 148:1–15

    Google Scholar 

  • Gràcia E, Bideau D, Hékinian R, Lagabrielle Y (1999) Detailed geological mapping of two contrasting second-order segments of the Mid-Atlantic Ridge between Oceanographer and Hayes fracture zones (33 degrees 30′N–35 degrees N). J Geophys Res Solid Earth 104(B10):22903–22921

    Google Scholar 

  • Lin J, Purdy GM, Schouten H, Sempere J-C, Zervas C (1990) Evidence for focused magmatic accretion along the Mid-Atlantic Ridge. Nature 344:627–632

    Article  ISI  Google Scholar 

  • Macdonald KC (1986) The crest of the Mid-Atlantic Ridge: models for crustal generation processes and tectonics. In: Vogt QR, Tucholke BE (eds) The geology of North America; The western North Atlantic region. DNAG Ser M, Geol Soc Amer, Boulder, CO, pp 51–58

    Google Scholar 

  • Magde LS, Sparks DW, Detrick RS (1998) The relationship between mantle flow, melt migration, and gravity bull’eyes at the Mid-Atlantic Ridge between 33° N and 35° N. Earth Planet Sc Lett 148:59–67

    Google Scholar 

  • Needham HD, SIGMA Scientific Team (1991) The crest of the Mid-Atlantic Ridge between 40° and 15° N: very broad swath mapping with the EM 12 Echo Sounding System. AGU Fall Meeting 470

    Google Scholar 

  • Sempere J-C, Purdy GM, Schouten H (1990) The segmentation of the Mid-Atlantic Ridge. Nature 344:427–431

    ISI  Google Scholar 

  • Smith DK, Cann JR (1992) The role of seamount volcanism in crustal construction of the Mid-Atlantic Ridge (24°–30° N). J Geophys Res 97:1645–1658

    Google Scholar 

  • Smith DK, Humphris SE, Tivey MA, Cann JR (1997) Viewing the morphology of the Mid-Atlantic Ridge from a new perspective. EOS Trans Am Geophys Union 78:26

    Google Scholar 

  • Tolstoy MA, Harding AJ, Orcutt JA (1993) Crustal thickness on the Mid-Atlantic Ridge: bull’s eye gravity anomalies and focused accretion. Science 262:726–729

    ISI  Google Scholar 

  • Udintsev GB (ed) (1994) International geological-geophysical atlas of the Atlantic Ocean. Intergovernmental Oceanographic Commission of UNESCO, Ministry of Geology of the USSR, Academy of Sciences of the USSR

    Google Scholar 

L.5.2.4.1

  • Alexander RT, Macdonald KC (1996a) Sea Beam, SeaMARC II and ALVIN-based studies of faulting on the East Pacific Rise 9 degrees 20′N–9 degrees 50′N. Mar Geophys Res 18:557–587

    Article  Google Scholar 

  • Alexander RT, Macdonald KC (1996b) Small off-axis volcanoes on the East Pacific Rise. Earth Planet Sc Lett 139: 387–394

    Google Scholar 

  • Carbotte SM, Macdonald KC (1994) Comparison of seafloor tectonic fabric at intermediate, fast and super fast spreading ridges: influence of spreading rate, plate motions, and ridge segmentation on fault patterns. J Geophys Res 99:13609–13632

    Article  Google Scholar 

  • Cochran JR, Goff JA, Malinverno A, Fornari DJ, Keeley C, Wang X (1993) Morphology of a “superfast” mid-ocean ridge crest and flanks: the East Pacific Rise, 7–9° S. Mar Geophys Res 15:65–75

    Article  Google Scholar 

  • Edwards MH, Smith M, Fornari DJ (1992) CCD digital camera maps the East Pacific Rise. EOS Trans Am Geophys Union 73

    Google Scholar 

  • Edwards MH, Fornari DJ, Scheirer DS, Haymon RM, Shanks WC III (1994) High-resolution bathymetric maps and photomosaics of vent fields on the East Pacific Rise, 9°–10°N. EOS Trans Am Geophys Union 75:601

    Google Scholar 

  • Fornari DJ, Perfit MR, Batiza R, Edwards MH (1992) Submersible transects across the East Pacific Rise crest and upper flanks, 9°31′–32′ N: 1. Observations of seafloor morphology and evidence for young volcanism off-axis. EOS Trans Am Geophys Union 73:525

    Google Scholar 

  • Gallo DG, Fox PJ, Macdonald KC (1986) A Sea Beam investigation of the Clipperton transform fault: the morphotectonic expression of a fast slipping transform boundary. J Geophys Res 91:3455–3467

    Article  Google Scholar 

  • Haymon RM, Fornari DJ, Von Damm KL, Lilley MD, Perfit MR, Edmond JM, et al. (1993) Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9 degree 45–52′N: direct submersible observations of seafloor phenomena associated with an eruption event in April, 1991. Earth Planet Sc Lett 119: 85–101

    Google Scholar 

  • Kurras GJ, Edwards MH, Fornari DJ (1997) High-resolution bathymetry and imagery of the East Pacific Rise axial summit trough [9°49′–51′ N]: fine-scale volcanic and hydrothermal morphology and processes in a submarine rift zone. EOS Trans Am Geophys Union 78:F647

    Google Scholar 

  • Macdonald KC (1991) Mid-ocean ridges: the quest for order. Oceanus 34:9–10

    ISI  Google Scholar 

  • Macdonald KC (1992) Mid-oceanic ridge. In: Parker SP (ed) McGraw-Hill Yearbook of Science & Technology. McGraw-Hill Inc., New York, pp 259–262

    Google Scholar 

  • Macdonald KC (1997) Sea Beam/SeaMARC II Studies of the East Pacific Rise and its flanks in preparation for a geologic/acoustic natural laboratory

    Google Scholar 

  • Macdonald KC, Fox PJ (1990) The mid-ocean ridge. Sci Am 262:72–79

    Article  Google Scholar 

  • Macdonald KC, Fox PJ, Perram LJ, Eisen MF, Haymon RM, Miller SP, Carbotte SM, Cormier M-H, Shor AN (1988) A new view of the mid-ocean ridge from the behaviour of ridge axis discontinuities. Nature 335:217–225

    ISI  Google Scholar 

  • Macdonald KC, Scheirer DS, Carbotte S, Fox PJ (1992) Recent advances in the understanding of mid-ocean ridge tectonics and volcanism using swath-mapping tools. Acta Geol Hispanica 27:13–32

    Google Scholar 

  • Macdonald KC, Fox PJ, Alexander RT, Pockalny R, Gente P (1996) Volcanic growth faults and the origin of Pacific abyssal hills. Nature 380:125–129

    ISI  Google Scholar 

  • Shen Y, Scheirer DS, Forsyth DW, Macdonald KC (1995) Trade-off in production between adjacent seamount chains near the East Pacific Rise. Nature 373:140–143

    Article  ISI  Google Scholar 

  • Toomey DR, Solomon SC, Purdy GM (1994) Tomographic imaging of the shallow crustal structure of the East Pacific Rise at 9°30′N. J Geophys Res 99:24135–24157

    Article  Google Scholar 

  • Tucholke BE, Macdonald KC, Fox PJ (1991) ONR seafloor natural laboratories on slow-and fast-spreading mid-ocean ridges. EOS Trans Am Geophys Union 72:268–270

    Google Scholar 

  • van Avendonk HJA, Harding AJ, Orcutt JA, McClain J (1998) A two-dimensional tomographic study of the Clipperton transform fault. J Geophys Res 103:17885–17899

    Google Scholar 

  • Von Damm KL, Buttermore LG, Oosting SE, Bray AM, Fornari DJ, Lilley MD, et al. (1997) Direct observation of the evolution of a seafloor ‘black smoker’ from vapor to brine. Earth Planet Sci Lett 149: 101–111

    Google Scholar 

  • Von Damm KL, Oosting SE, Koslowski R, Buttermore LG, Colodner DC, Edmonds HN, Edmond JM, Grebmeier JM (1995) Evolution of East Pacific Rise hydrothermal vent fluids following a volcanic eruption. Nature 375:47–50

    Article  Google Scholar 

  • Wright DJ (1998) Formation and development of fissures at the East Pacific Rise: implications for faulting and magmatism at mid-ocean ridges. In: Buck WR, Delaney PT, Karson JA, Lagabrielle Y (eds) Faulting and magmatism at mid-ocean ridges. American Geophysical Union, Washington, D.C., Geophysical Monograph 106, pp 137–152

    Google Scholar 

L.5.2.4.3

  • Jordahl K, Caress D, McNutt M, Bonneville A (2003) Seafloor topography and morphology of the Superswell region. In: Hékinian R, Stoffers P, Cheminée J-L (eds) Oceanic hotspots: intraplate submarine magmatism and tectonism. Springer-Verlag, pp 9–28

    Google Scholar 

  • Norton IO (1995) Plate motions in the North Pacific; the 43 Ma nonevent. Tectonics 14(5):1080–1094

    Article  ISI  Google Scholar 

  • Sandwell DT (1986) Thermal stress and the spacings of transform faults. J Geophys Res B 91(6):6405–6417

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global sea floor topography from satellite altimetry and ship depth soundings. Science 277:1956–1962

    ISI  Google Scholar 

L.5.2.5

  • Gardner JV, van den Ameele EJ, Gelfenbaum G, Barnhardt W, Lee H, Palmer S (2001) Mapping southern Puget Sound delta fronts after the 2001 Nisqually earthquake. EOS Trans Am Geophys Union 82(42):485–489

    Google Scholar 

  • Marlow MS, Gardner JV, Normark WR (2000) Using high-resolution multibeam bathymetry to identify seafloor surface rupture along the Palos Verdes fault complex in offshore southern California. Geology 28:587–590

    Article  ISI  Google Scholar 

L.5.2.6

  • Naveh Z (1990) Fire in the mediterranean — a landscape ecological perspective. In: Goldammer JG, Jenkins MJ (ed) Fire in ecosystem dynamics — mediterranean and northern perspectives. SPB Academic Publishing, The Hague, pp 1–20

    Google Scholar 

  • Simkin T, Siebert L, McClelland L, Bridge D, Newhall C, Latter JJ (1981) Volcanoes of the world. Smithsonian Inst. Hutchinson Ross Publ, Stroudsberg, pp 1–232

    Google Scholar 

L.5.2.6.1

  • Kuhn T, Halbach P, Maggiulli M (1995) Formation of ferromanganese microencrustations in relation to glacial/interglacial stages in Pleistocene sediments from Ampere Seamount (subtropical NE Atlantic). 85. Jahrestagung der Geologischen Vereinigung e. V.; summary: Terra Nostra (Bonn). Glob Change Mar Geol 1–95:28

    Google Scholar 

  • Litvin VM, Matveyenkov EL, Onishchenko EL, Rudenko MV, Sagalevich AM (1982) New data on the structure of Ampere Seamount. Oceanology+ 22(1):62–64

    Google Scholar 

  • Marova NA, Yevsyukov YuD (1988) The geomorphology of the Ampere submarine seamount (in the Atlantic). Oceanology+ 27(4):452–455

    Google Scholar 

  • Matveyenkov VV, Poyarkov SG, Dmitriyenko OV, Al’mukhamedov AI, Gamsakhurdia GR, Kuznetsov OL (1993) Geological particularities of the seamount structure in the Azoro-Gibraltar Zone. Oceanology+ 33(5):664–673

    Google Scholar 

L.5.2.6.2

  • Chadwick WW Jr, Embley RW, Fox CG (1991) Evidence for volcanic eruption on the southern Juan de Fuca Ridge between 1981 and 1987. Nature 350:416–418

    Article  ISI  Google Scholar 

  • Ginster U, Mottl MJ, Von Herzen RP. (1994) Heat flux from black smokers on the Endeavour and Cleft segments, Juan de Fuca Ridge. J Geophys Res 99:4937–4950

    Article  Google Scholar 

  • Johnson HP, Embley RW (1990) Axial Seamount: an active ridge axis volcano on the centra Juan de Fuca Ridge. J Geophys Res 95:12689–12696

    Google Scholar 

  • Johnson HP, Holmes ML (1989) Evolution in plate tectonics: the Juan de Fuca Ridge. In: Winterer EL, Hussong DM, Decker RW (eds) The geology of North America: the Eastern Pacific Ocean and Hawaii. Geological Society of America, Boulder, Colorado, pp 73–91

    Google Scholar 

L.5.2.7

  • ANZECC (1999) Strategic plan of action for the national representative system of marine protected areas — a guide for action by Australian governments. Australian and New Zealand Environment and Conservation Council, Taskforce on Marine Protected Areas, Canberra

    Google Scholar 

  • Collie JS, Escanero GA, Valentine PC (1997) Effects of bottom fishing on the benthic megafauna of Georges Bank. Mar Ecol-Prog Ser 155:159–172

    Google Scholar 

  • Commonwealth of Australia (2000) Commonwealth policy on fisheries by-catch. Commonwealth of Australia, Canberra

    Google Scholar 

  • Koslow JA (1997) Seamounts and the ecology of deep-sea fisheries. An Sci 85:168–176

    Google Scholar 

  • Koslow JA, Bulman CM, Lyle JM (1994) The mid-slope demersal fish community off southeastern Australia. Deep-Sea Res 41:113–141

    ISI  Google Scholar 

  • Richer de Forges B, Koslow JA, Poore G (2000) Diversity and endemism of the benthic seamount fauna in the southwest Pacific. Nature 405:944–947

    Google Scholar 

  • Rintoul SR, Bullister JL (1999) A late winter hydrographic section from Tasmania to Antarctica. Deep-Sea Res Pt I (46)8:1417–1454

    Google Scholar 

  • Rintoul SR, Donguy JR, Roemmich DH (1997) Seasonal evolution of upper ocean thermal structure between Antarctica and Tasmania. Deep-Sea Res 44:1185–1202

    ISI  Google Scholar 

L.5.2.8

  • Gardner JV, Mayer LA, Hughes-Clarke JE (1998) North Maui and Pailolo, Auau, and Kealaikahiku Channels (Maui, Molokai, Lanai and Kohoolawe, Hawaii): a high-resolution multibeam survey. American Geophysical Union Fall Mtg, p F827

    Google Scholar 

L.5.2.9

  • Lallemand S, Liu CS, ACT cruise scientific team (1997) Swath bathymetry reveals active arc-continent collision near Taiwan. EOS Trans Am Geophys Union 78(17):173–175

    Google Scholar 

  • Lallemand S, Liu C-S, Dominguez S, Schnurle P, Malavieille J, ACT scientific crew (1999) Trench-parallel stretching and folding of forearc basins and lateral migration of the accretionary wedge in the southern Ryukyus: a case of strain partition caused by oblique convergence. Tectonics 18:231–247

    Article  ISI  Google Scholar 

  • Liu C-S, Liu SY, Lallemand SE, Lundberg N, Reed D (1998) Digital elevation model offshore Taiwan and its tectonic implications. TAO 9(4):705–738

    Google Scholar 

  • Liu C-S, Deffontaines B, Lu C-Y, Lallemand S (n.Y.) Deformation patterns of an accretionary wedge in the transition zone from subduction to collision offshore southwestern Taiwan. Submitted to Marine Geophysical Research

    Google Scholar 

  • Malavieille J, Lallemand SE, Dominguez S, Deschamps A, Lu C-Y, Liu C-S, Schnurle P, ACT scientific crew (2002) Arccontinent collision in Taiwan: new marine observations and geodynamic model. In: Byrne T, Liu C-S (eds) Geology and geophysics of an arc-continent collision, Taiwan. Geol Soc Am Special Paper 358, 344:103–134

    Google Scholar 

  • Schnurle P, Liu C-S, Lallemand S, Reed D (1998) Structural controls of the Taitung Canyon in the Huatung Basin east of Taiwan. TAO 9(3):453–472

    Google Scholar 

  • Smith WHF, Sandwell D (1997) Measured and estimated seafloor topography. World Data Center-A for Marine Geology and Geophysics Research Publication RP-1, Annou

    Google Scholar 

L.5.3.1.1

  • Dokken TM, Jansen E (1999) Rapid changes in the mechanism of ocean convection during the last glacial period. Nature 401:458–461

    Article  ISI  Google Scholar 

  • Evans D, King EL, Kenyon NH, Brett C, Wallis D (1996) Evidence for long-term instability in the Storegga slide region off western Norway. Mar Geol 130:281–292

    Article  Google Scholar 

  • Haflidason H, Gravdal A, Sejrup HP (2003) Northern Storegga slide escarpment morphology and features. In: Mienert J, Weaver P (eds) European margin sediment dynamics: side-scan sonar and seismic images. Springer-Verlag

    Google Scholar 

L.5.3.1.2

  • Laberg JS, Vorren TO (2003) The Traenadjupet slide: sediment disintegration and flow. In: Mienert J, Weaver P (eds) European margin sediment dynamics: side-scan sonar and seismic images. Springer-Verlag, pp 67–70

    Google Scholar 

L.5.3.1.3

  • Gee MJR, Watts AB, Masson DG, Mitchell NC (2001) Landslides and the evolution of El Hierro in the Canary Islands. Mar Geol 177:271–293

    Article  Google Scholar 

  • Masson DG (1996) Catastrophic collapse of the flank of El Hierro about 15000 years ago, and the history of large flank collapses in the Canary Islands. Geology 24: 231–234

    Article  ISI  Google Scholar 

  • Masson DG, Canals M, Alonso B, Urgeles R, Hühnerbach V (1998) The Canary debris flow: source area morphology and failure mechanisms. Sedimentology 45:411–432

    Article  ISI  Google Scholar 

  • Urgeles R, Canals M, Baraza J, Alonso B, Masson DG (1997) The most recent megaslides on the Canary Islands: the El Golfo Debris Avalanche and the Canary debris flow, west El Hierro Island. J Geophys Res 102:20305–20323

    Article  Google Scholar 

  • Urgeles R, Masson DG, Canals M, Watts AB, Le Bas T (1999) Recurrent large-scale landsliding on the west flank of La Palma, Canary Islands. J Geophys Res 104:25331–25348

    Article  Google Scholar 

  • Watts AB, Masson DG (1995) A giant landslide on the north flank of Tenerife, Canary Islands. J Geophys Res 100:24487–24498

    Google Scholar 

L.5.3.2.1

  • Auffret GA, Zaragosi S, Voisset M, Droz L, Loubrieu B, Pelleau P, Savoye B, Bourillet JF, Baltzer A, Bourquin S, Dennielou B, Coutelle A, Weber N, Floch G (2000) Premières observations sur la morphologie et les processus sédimentaires récents de l’Eventail celtique. Oceanol Acta 23(1):109–116

    Article  Google Scholar 

  • Droz L, Auffret GA, Savoye B, Bourillet JF (1999) L’éventail profond de la marge Celtique: stratigraphie et èvolution sédimentaire. CR Acad Sci Paris 328:173–180

    Google Scholar 

  • Sibuet JC, Monti S, Pautot G (1994) Carte bathymétrique du Golfe de Gascogne. CR Acad Sci Paris 318(2):615–625

    Google Scholar 

  • Zaragosi S, Auffret GA, Faugères JC, Garlan T, Pujol C, Cortijo E (2000) Physiography and recent sediment distribution of the Celtic Deep-sea Fan, Bay of Biscay. Mar Geol 169:207–237

    Article  Google Scholar 

L.5.3.2.2

  • Nygård A, Haflidason H, Sejrup HP (2003a) Morphology of a non-glacigenic debris flow lobe in the Helland Hansen area investigated with 3D-seismic data. In: Mienert J, Weaver P (eds) European margin sediment dynamics: side-scan sonar and seismic images. Springer-Verlag, pp 63–65

    Google Scholar 

  • Nygård A, Sejrup HP, Haflidason H (2003b) Morphology of glacigenic debris flows on the upper North Sea Fan. In: Mienert J, Weaver P (eds) European margin sediment dynamics: side-scan sonar and seismic images. Springer-Verlag

    Google Scholar 

L.5.3.2.3

  • Laberg JS, Vorren TO (1995) Late Weichselian submarine debris flow deposits on the Bear Island Trough Mouth Fan. Mar Geol 127:45–72

    Article  Google Scholar 

  • Laberg JS, Vorren TO (2000) Flow behaviour Of The submarine glacigenic debris flows on the Bear Island trough mouth Fan, western Barents Sea. Sedimentology 47:1105–1117

    Article  ISI  Google Scholar 

  • Mohrig D, Elverhøi A, Parker G (1999) Experiments on the relative mobility of muddy subaqueous and subaerial debris flows, and their capacity to remobilize antecedent deposits. Mar Geol 154:117–129

    Article  Google Scholar 

  • Vogt PR, Crane K, Sundvor E (1993) Glacigenic mudflows on the Bear Island submarine fan. EOS Trans Am Geophys Union 74:449, 452–453

    Google Scholar 

L.5.3.2.4

  • Hübscher C, Spieß V, Breitzke M, Weber M (1997) The youngest channel-levee systems of the Bengal Fan: results from digital sediment echosounder data. Mar Geol 141:125–145

    Google Scholar 

  • Hübscher C, Breitzke M, Michels K, Kudraß H, Spieß V, Wiedicke M (1998) Late Quaternary seismic stratigraphy of the eastern Bengal Shelf. Mar Geophys Res 20(1):57–71

    Google Scholar 

  • Michels K, Kudraß HR, HÜbscher C, Suckow A, Wiedicke M (1998) The submarine delta of the Ganges-Brahmaputra: cyclone-dominated sedimentation patterns. Mar Geol 149:133–154

    Article  Google Scholar 

  • Schwenk T, Spieß V, Hübscher C, Breitzke M (2003) Frequent channel avulsion within the active channel-levee system of the middle Bengal Fan–an exceptional channel-levee development derived from parasound and hydrosweep data. Deep-Sea Res Pt II 50:1023–1045

    Google Scholar 

  • Weber ME, Wiedicke M, Kudraß H-R, Hübscher C, Erlenkeuser H (1997) Active growth of the Bengal Fan during sea-level rise and highstand. Geology 25(4):315–318

    Article  ISI  Google Scholar 

L.5.3.2.5

  • Reinhardt L, Kudrass HR, Lückge A, Wiedicke M, Wunderlich J, Wendt G (2003) High-resolution sediment echosounding off Peru. Late Quaternary depositional sequences and sedimentary structures of a current-dominated shelf. Mar Geophys Res 23:335–351

    Google Scholar 

  • Wendt G, Müller S (2003) High resolutions with parametric acoustical systems. Prodelta Technology Forum DELTECH International Workshop, Venice, Italy, May 2003

    Google Scholar 

  • Wunderlich J, Müller S (2003) High-resolution subbottom profiling using parametric acoustics. Int Ocean Sys 7(4):6–11

    Google Scholar 

  • Wunderlich J, Wendt G (2001) Advantages of parametric acoustics for the detection of the dredging level in areas with siltation. 7th Workshop on Dredging and Surveying, Scheveningen (Den Haag), 07.–08. Juni 2001. Tagungsband, Scheveningen 2001, pp 67–75

    Google Scholar 

  • Wunderlich J, Wendt G (2003) Detection of embedded archaeological objects with parametric sub-bottom profilers. Prodelta Technology Forum DELTECH International Workshop, Venedig (Italien), Mai 2003

    Google Scholar 

  • Wunderlich J, Wendt G (2004) High-resolution echo-sounding and estimation of sediment properties using nonlinear acoustics. Near Surface 2004, Conference of the European Association of Geoscientists and Engineers (EAGE), 06.–09. September 2004, Utrecht (NL); In: Near Surface 2004 Extended Abstracts Book, ISBN 90-73781-37-X

    Google Scholar 

  • Wunderlich J, Wendt G, Müller S (2003) Non-linear Acoustics in Echosounding and Sediments. Hydro International 7(9):44–47

    Google Scholar 

L.5.3.3

  • Ashley GM (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. J Sediment Petrol 60:160–172

    Google Scholar 

  • Belderson RH, Johnson MA, Kenyon HH (1982) Bedforms. In: Stride AH (ed) Offshore tidal sands. Chapman and Hall, London, pp 27–57

    Google Scholar 

  • Dalrymple RW, Rhodes RN (1995) Estuarine dunes and Bars. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Elsevier, Amsterdam, pp 359–422

    Google Scholar 

  • Langhorne DN (1982) Consideration of meteorological conditions when determining the navigational water depth over a sand wave field. In: Stride AH (ed.): Offshore tidal sands. 15th Annual Canadian Hydrographic Conference, Ottawa. Chapman and Hall, London

    Google Scholar 

  • McCave IN (1971) Sand waves in the North Sea off the coast of Holland. Mar Geol 10:199–225

    Article  Google Scholar 

  • Salsman GG, Tolbert WH, Villars RG (1966) Sand-ridge migration in St. Andrew Bay, Florida. Mar Geol 4:11–19

    Article  Google Scholar 

  • Terwindt JMJ (1971) Sand waves in the southern bight of the North Sea. Mar Geol 10:51–67

    Article  Google Scholar 

  • Wever ThF, Stender IH (2000) Strategies for and results from the investigation of migrating bedforms in the German Bight. In: Trentesaux A, Garlan TE (eds) Marine sandwave dynamics. International Workshop, March 23.–24. 2000, University of Lille 1, Proceedings, pp 221–226

    Google Scholar 

  • Yalin MS (1964) Geometrical properties of sandwaves. J Hydr Eng Div-Asce 90(HY5):105–119

    Google Scholar 

L.5.3.4.1

  • Beyer A, Schenke HW, Klenke M, Niederjasper F (2003) High resolution bathymetry of the eastern slope of the Porcupine Seabight. Mar Geol 198:27–54

    Article  Google Scholar 

  • De Mol B, Van Rensbergen P, Pillen S, Van Herreweghe K, Van Rooij D, McDonnell A, Huvenne V, Ivanov M, Swennen R, Henriet JP (2002) Large deep-water coral banks in the Porcupine Basin, southwest of Ireland. Mar Geol 188:193–231

    Google Scholar 

  • Henriet JP, De Mol B, Vanneste M, Huvenne V, Van Rooij D, Porcupine-Belgica 97, 98 and 99 shipboard parties (2001) Carbonate mounds and slope failures in the Porcupine Basin: a development model involving fluid venting. In: Shannon PM, Haughton PDW, Corcoran DV (eds) The petroleum exploration of Ireland’s offshore basins

    Google Scholar 

  • Henriet JP, Guidard S, ODP Proposal 573 Team (2002) Carbonate mounds as a possible example for microbial activity in geological processes. In: Wefer G, Billett D, Hebbeln D, Joergensen BB, Schluetter M, van Weering TJ (eds) Ocean margin systems. pp 439–455

    Google Scholar 

  • Huvenne VAI, De Mol B, Henriet JP (2003) A 3D seismic study of the morphology and spatial distribution of buried coral banks in the Porcupine Basin, SW of Ireland. Mar Geol 198:5–25

    Article  Google Scholar 

  • Van Rooij D, De Mol B, Huvenne V, Ivanov M, Henriet JP (2003) Seismic evidence of current-controlled sedimentation in the Belgica mound province, upper Porcupine slope, southwest of Ireland. Mar Geol 195:31–53

    Google Scholar 

  • Van Weering TJ, Dullo C, Henriet JP (2003) An introduction to geosphere-biosphere coupling; cold seep related carbonate and mound formation and ecology. Mar Geol 198:1–3

    Google Scholar 

L.5.3.4.2

  • Freiwald A, Fosså JH, Grehan A, Koslow T, Roberts JM (2004) Cold-water coral reefs. UNEP-WCMC-Report, Biodiversity Series 22:1–84

    Google Scholar 

L.5.3.5.1

  • Dowdeswell JA, Kenyon NH, Elverhøi A, Laberg JS, Hollender FJ, Mienert J, Siegert MJ (1996) Large-scale sedimentation on the glacier-influenced Polar North Atlantic margins: long-range side-scan sonar evidence. Geophys Res Lett 23:3535–3538

    Article  Google Scholar 

  • Hjelstuen BO, Eldholm O, Faleide JI, Vogt PR (1999) Regional setting of Håkon Mosby Mud Volcano, SW Barents Sea Margin. Geo-Mar Lett 19:22–28

    Article  Google Scholar 

  • Mienert J, Posewang J, Lukas D (2001) Changes in the hydrate stability zone on the Norwegian Margin and their consequence for methane and carbon releases into the oceanosphere. In: Schäfer P, Ritzrau W, Schlüter M, Thiede J (eds) The northern North Atlantic: a changing environment. Springer-Verlag, New York, pp 281–290

    Google Scholar 

  • Van Rensbergen P, Depreiter D, Pannemans B, Henriet JP (2005) Sea floor expression of sediment extrusion and intrusion at the El Arraiche mud volcano field, Gulf of Cadiz. J Geophys Res-Sol Ea, in press

    Google Scholar 

  • Vogt PR, Crane K, Pfirman S, Sundvor E, Cherkis N, Fleming H, Nishimura C, Shor A (1991) SeaMARC II sidescan sonar imagery and swath bathymetry in the Nordic Basin. EOS Trans Am Geophys Union 72:486

    Google Scholar 

  • Vogt PR, Gardner J, Crane K (1999) The Norwegian-Barents-Svalbard (NBS) continental margin: introducing a natural laboratory of mass wasting, hydrates, and ascent of sediment, pore water, and methane. Geo-Mar Lett 19:2–21

    Google Scholar 

L.5.3.5.2

  • Acosta J, Palomo C, Uchupi E, Muñoz A, Escartin J, Herranz P, Sanz JL (1998) Morphology and seismic character north slope Tenerife, Canary Island. Evidence episod. Massive Landslides. In: The European Laboratory Volcanoes, Volcanic Risk. E S F (EVOP), pp 579–588

    Google Scholar 

  • Palomo C, Acosta J, Sanz JL, Herranz P, Muñoz A, Uchupi E, y Escartin J (1997) Morphometric interpretation of the northwest and southeast slopes of Tenerife, Canary Islands. J Geophys Res 102(B9):20325–20342

    Google Scholar 

L.5.3.6

  • Augustin M, Le Suave R, Lurton X, Voisset M, Dugelay S, Satra C (1996) Contribution of the multibeam acoustic imagery to the exploration of the sea-bottom. Mar Geophys Res 18:459–486

    Article  Google Scholar 

  • Beyer A, Chakraborty B, Schenke HW (2005) Seafloor characterization of the mound and channel provinces of the Porcupine Seabight — an application of the multi-beam angular backscatter data. Springer-Verlag, submitted

    Google Scholar 

  • Hill PJ, De Deckker P (2004) AUSCAN seafloor mapping and geological sampling survey on the Australian southern margin by RV Marion Dufresne in 2003. Geoscience Australia Record 2004/04, 136 pp and CD-ROM

    Google Scholar 

  • Hill PJ, De Deckker P, Exon NF (2005) Geomorphology and evolution of the gigantic Murray Canyons on the Australian southern margin. Aust J Earth Sci (submitted)

    Google Scholar 

  • Hugh Clarke JE (1993) The potential for seabed classi-fication using backscatter from shallow water multibeam sonars. Proceedings of the Institute of Acoustics 15(2)

    Google Scholar 

  • Sprigg RC (1947) Submarine canyons of the New Guinea and South Australian coasts. T Roy Soc South Aust 71(2):296–310

    Google Scholar 

  • Von der Borch CC (1968) Southern Australian submarine canyons: their distribution and ages. Mar Geol 6:267–279

    Google Scholar 

L.5.3.7

  • Davies TA, Bell T, Cooper AK, Josenhans H, Polyak L, Solheim A, Stoker MS, Stravers JA (1997) Glaciated continental margins. An atlas of acoustic images. Chapman and Hall, London

    Google Scholar 

  • Plassen L, Vorren TO (2003) Fluid flow features in fjord-fill deposits, Ullsfjorden, North Norway. Norwegian Journal Of Geology 83:37–42

    ISI  Google Scholar 

  • Plassen L, Vorren TO, Forwick M (2004) Integrated acoustic and coring investigation of glacigenic deposits in Spitsbergen fjords. Polar Res 23:89–110

    ISI  Google Scholar 

  • Syvitski JPM, Shaw J (1995) Sedimentology and geomorphology of fjords. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Developments in Sedimentology, pp 113–178

    Google Scholar 

  • Syvitski JPM, Burell DC, Skei JM (1987) Fjords — processes and products. Springer-Verlag, New York, 379 pp

    Google Scholar 

L.5.3.8

  • Loncarevic BD, Courtney RC, Fader GBJ, Giles PS, Piper DJW, Costello G, Hughes Clarke JE, Stea RR (1994) Sonography of a glaciated continental shelf. Geology 22:747–750

    Article  ISI  Google Scholar 

L.5.3.9.1

  • Fader GBJ, Miller RO, Craft A (2001) Bedford Basin, Nova Scotia: an interpretation of seabed materials, features and processes on multibeam bathymetry. Geological Survey of Canada Open File No. 3941

    Google Scholar 

  • Hooker SK, Whitehead H, Gowans S (1999) Marine protected area design and the spatial and temporal distribution of cetaceans in a submarine canyon. Conserv Biol 13(3):592–602

    Article  Google Scholar 

  • Li MZ, King E, Smyth C (2003a) Morphology and stability of sand ridges on Sable Island Bank, Scotian Shelf. GSCA Open File 1836, 52 pp

    Google Scholar 

  • Li MZ, Parrott DR, Yang Z (2003b) Stability and dispersion of dredged material at the black point ocean disposal site, Saint John Harbour, New Brunswick. Proceedings of 2003 Canadian Coastal Conference, 15–17 October 2003, Kingston, Ontario

    Google Scholar 

  • Preston JM, Parrott DR, Collins WT (2003) Sediment classification based on repetitive multibeam bathymetry surveys of an offshore disposal site., Proceedings IEEE Oceans 2003 San Diego, California, 22–26 Sept, MTS document 0-933957-31-9, pp 69–75

    Google Scholar 

L.5.3.9.2

  • Dalrymple RW, Rhodes RN (1995) Estuarine dunes and bars. In: Perillo GME (ed) Geomorphology and sedimentology of estuaries. Developments in sedimentology. Vol., 53, Elsevier Science, pp 359–422

    Google Scholar 

  • Miller MC, McCave IN, Komar PD (1977) Threshold of sediment motion under unidirectional currents. Sedimentology 24:507–527

    ISI  Google Scholar 

  • Mosher DC, Moran K (2001) Post-glacial evolution of Saanich Inlet, British Columbia: results of physical property and seismic reflection stratigraphic analysis. Mar Geol

    Google Scholar 

  • Rubin DM, McCulloch DS (1980) Single and superimposed bedfroms: a synthesis of San Francisco Bay and flume observations. Sediment Geol 26:207–231

    Article  Google Scholar 

  • Southard JB, Boguchwal LA (1990) Bed configurations in steady uni-directional water flows, part 2. Synthesis of flume data. J Sediment Petrol 60:658–679

    Google Scholar 

  • Yalin MS (1977) Mechanics of sediment transport, 2nd edition. Pergamon Press, Toronto, 298 pp

    Google Scholar 

L.5.3.9.3

  • Fedje DW, Josenhans H (2000) Drowned forests and archaeology on the continental shelf of British Columbia, Canada. Geology 28:99–102

    Article  ISI  Google Scholar 

  • Josenhans H, Fedje DW, Pienitz R, Southon JR (1997) Early humans and rapidly changing Holocene sea levels in the Queen Charlotte Islands, Hecate Strait, British Columbia, Canada. Science 277:71–74

    Article  ISI  Google Scholar 

L.5.4.1

  • Canadian Ya Ya (1962) The exploration and development of polar lands. In: Harris CD (ed) Soviet geography; accomplishments and tasks. American Geographical Society Occasional Publication 1, New York, pp 265–274

    Google Scholar 

  • Heezen BC, Ewing M (1961) The mid-oceanic ridge and its extension through the Arctic Basin. In: Raasch GO (ed) Geology of the Arctic. University of Toronto Press, pp 622–642

    Google Scholar 

  • Hunkins K (1968) Geomorphic provinces if the Arctic Ocean. In: Sater JE (ed) Arctic drifting stations. Arctic Institute of North America, pp 365–376

    Google Scholar 

  • Hydrographic Service (1979) General bathymetric chart of the oceans (GEBCO) sheet 5.17. Canadian Hydrographic Service, Ottawa, scale 1:6000000. 1 sheet

    Google Scholar 

  • Jakobsson M (2002) Hypsometry of the Arctic Ocean and its constituent seas. Geochem Geophys Geosyst 3(5)

    Google Scholar 

  • Jakobsson M, Cherkis N, Woodward J, Coakley B, Macnab R (2000) A new grid of Arctic bathymetry: a significant resource for scientists and mapmakers. EOS Trans Am Geophys Union 81(9):89, 93, 96

    Google Scholar 

  • Jokat W, Weigelt E, Kristoffersen Y, Rasmussen TM (1995) New insights into the evolution of Lomonosov Ridge and the Eurasia Basin. Geophys J Int 122:378–392

    Google Scholar 

  • Karasik AM (1968) Magnetic anomalies of Hakkel Ridge and origin of the Eurasia subbasin of the Arctic Ocean. Geophysical Methods Of Prospecting In The Arctic 5:8–19

    Google Scholar 

  • Karasik AM (1974) The Euro-Asian Basin of the North Polar Ocean from the standpoint of plate tectonics. In: NIDRA (ed) Problems of the geology of the polar regions of the Earth. Leningrad, pp 24–31 (in Russian)

    Google Scholar 

  • Menard HW, Smith SM (1966) Hypsometry of ocean basin provinces. J Geophys Res 71:4305–4325

    Google Scholar 

  • Nansen F (1902) The Norwegian North Polar Expedition 1893–1896: scientific results. London Longmans, Green, v. III

    Google Scholar 

  • Perry RK, Flemming HS, Weber HR, Kristoffersen Y, Hall JK, Grantz A, Johnson GL (1985) Bathymetry of the Arctic Ocean. Naval Research Laboratory, Washington, Scale 1:4704075, 1 Sheet

    Google Scholar 

  • Vink GE, Jason Morgan W, Zhao WL (1984) Preferential rifting of continents: a source of displaced terranes. J Geophys Res 89:10072–10076

    Google Scholar 

  • VNIIOkeangeologia (All Russia Research Institute for Geology and Mineral Resources of the World Ocean) (1999) Bottom relief of the Arctic Ocean. Department of Navigation and Oceanography, St. Petersburg, Russian Federation, scale 1: 5000000, 1 Sheet

    Google Scholar 

  • Vogt PR, Taylor PT, Kovacs LC, Johnson GL (1979) Detailed aeromagnetic investigation of the Arctic Basin. J Geophys Res 84:1071–1089

    Google Scholar 

  • Weber JR (1983) Maps of the Arctic Basin sea floor: a history of bathymetry and its interpretation. Arctic 36(2):121–142

    ISI  Google Scholar 

  • Wilson JT (1963) Hypothesis of Earth’s behavior. Nature 198:925–929

    ISI  Google Scholar 

L.5.4.2

  • Klenke M, Schenke HW (2003) A new bathymetric model for the central Fram Strait. Mar Geophys Res 23(4) 367–378(12)

    Google Scholar 

L.5.4.3

  • Bauch HA, Mueller-Lupp T, Taldenkova E, Spielhagen RF, Kassens H, Grootes PM, Thiede J, Heinemeier J, Petryashov VV (2001) Chronology of the Holocene transgression at the North Siberian margin. Global Planet Change 31:125–141

    Article  Google Scholar 

  • Dittmers K, Niessen F, Stein R (2003) Holocene sediment budget and sedimentary history for the Ob and Yenisei Estuaries. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. P Mar Sci 6:457–484

    Google Scholar 

  • Fairbanks RG (1989) A 17 000-year glacio eustatic sea level record: incfluence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature 342:637–642

    Article  ISI  Google Scholar 

  • Kleiber HP, Niessen F (1999) Late Pleistocene paleoriver channels on the Laptev Sea shelf — implications from sub-bottom profiling. In: Kassens H, Bauch HA, Dmitrenko I, Eicken H, Hubberten HW, Melles M, Thiede J, Timikhov L (eds) Land-ocean systems in the Siberian Arctic: dynamics and history. Springer-Verlag, Berlin, pp 657–665

    Google Scholar 

  • Merklin LR, Kuznetzov VP, Timoshenko VI, Tarasov SP (1991) Parametric sonars in ocean studies. Proceedings of OSATES-91 (Ocean Space Advanced Technology Show) International Congress, Brest, France (in English)

    Google Scholar 

  • Merklin LR, Dunaev NN, Levchenko OV, Pavlidis YuA (1994) The Quaternary deposits of the Barents Sea and Valdai Glaciation of the Eurasian Arctic Shelf. In: DK Thurston, K Fujita (eds) 1992 Proceedings of Int. Conf. on Arctic Margins. Anchorage, 1994, pp 327–332

    Google Scholar 

  • Polyak L, Gataullin V, Okuneva O, Stelle V (2000) New constraints on the limit of the Barents-Kara ice sheet during the Last Glacial Maximum based on borehole stratigraphy from the Pechora Sea. Geology 28:611–614

    Article  ISI  Google Scholar 

  • Polyak L, Levitan M, Khusid T, Merklin L, Mukhina V (2002) Variations in the influence of riverine discharge on the Kara Sea during the last deglaciation and the Holocene. Global Planet Change 32:291–309

    Article  Google Scholar 

  • Stein R, Fahl K (2000) Holocene accumulation of organic carbon at the Laptev Sea continental margin (Arctic Ocean): sources, pathways, and sinks. Geo-Mar Lett 20:27–36

    Article  Google Scholar 

  • Stein R, Niessen F, Dittmers K, Levitan M, Schoster F, Simstich J, Steinke T, Stepanets OV (2002) Siberian river run-off and Late Quaternary glaciation in the southern Kara Sea: preliminary results. Polar Res 21:315–322

    ISI  Google Scholar 

  • Stein R, Fahl K, Dittmers K, Niessen F, Stepanets OV (2003) Holocene siliciclastic and organic carbon fluxes in the Ob and Yenisei Estuaries and the adjacent inner Kara Sea: quantification, variability, and paleoenvironmental implications. In: Stein R, Fahl K, Fütterer DK, Galimov EM, Stepanets OV (eds) Siberian river run-off in the Kara Sea: characterisation, quantification, variability, and environmental significance. P Mar Sci 6:401–434

    Google Scholar 

  • Stuiver M, Reimer PJ, Bard E, Beck JW, Burr GS, Hughen KA, Kromer B, McCormic G, van der Plicht J, Spurk M (1998) INTCAL 98 radiocarbon age calibration, 24000-0 cal BP. Radiocarbon 40:1041–1083

    ISI  Google Scholar 

  • Svendsen JI, Astakhov VI, Bolshiyanov DY, Demidov I, Dowdeswell JA, Gautallin V, Hjort Ch, Hubberten HW, Larsen E, Mangerud J, Melles M, Möller P, Saarnisto M, Siegert MJ (1999) Maximum extent of the Eurasian ice sheets in the Barents and Kara Sea region during the Weichselian. Boreas 28:234–242

    Article  ISI  Google Scholar 

L.5.4.4

  • Rothrock DA, Yu Y, Maykut GA (1999) Thinning of the Arctic sea-ice cover. Geophys Res Lett 26(23):3469–3472

    Article  Google Scholar 

  • Schramm JL, Flato GM, Curry JC (2000) Toward the modeling of enhanced basal melting in ridge keels. J Geophys Res 105(C6):14081–14092

    Article  Google Scholar 

  • Wadhams P (1988) The underside of Arctic sea ice imaged by sidescan sonar. Nature 333(6169):161–164

    Article  ISI  Google Scholar 

  • Wadhams P (1992) Sea ice thickness distribution in the Greenland Sea and Eurasian Basin, May 1987. J Geophys Res 102(C4):5331–5348

    Google Scholar 

  • Wadhams P (1997) Variability of arctic sea ice thickness–statistical significance and its relationship to heat flux. In: Stel JH, Behrens HWA, Borst JC, Droppert LJ, Van der Meulen JP (eds) Operational oceanography. The challenge for European co-operation. Elsevier Oceanogr Srs 62:368–384

    Google Scholar 

  • Wadhams P (2000) Ice in the ocean. Taylor and Francis, 351 pp

    Google Scholar 

  • Wadhams P, Davis NR (2000) Further evidence for ice thinning in the Arctic Ocean. Geophys Res Lett 27(24):3973–3975

    Article  Google Scholar 

L.5.5.1

  • Hinz K (1981) A hypothesis on terrestrial catastrophes, wedges of very thick oceanward dipping layers beneath passive margins. Geologisches Jahrbuch E22:3–28

    Google Scholar 

  • Hinz K, Krause W (1982) The continental margin of Queen Maud Land/Antarctica: seismic sequences, structural elements and geological development. Geologisches Jahrbuch E23:17–41

    Google Scholar 

  • Hinz K, Kristoffersen Y (1987) Antarctica, recent advances in the understanding of the continental shelf. Geologisches Jahrbuch E37:3

    Google Scholar 

  • Jacobs SS, Weiss RF (1998) Ocean, ice and atmosphere: interactions at the Antarctic continental margin. Published under the aegis of the Board of Associate Editors, Antarctic Research Series 75, American Geophysical Union

    Google Scholar 

  • Jokat W, Hübscher C, Meyer U, Oszko L, Schöne T, Versteeg W, Miller H (1996) The continental margin off East Antarctica between 10°W and 30°W. In: Storey BC, King EC, Livermore RA (eds) Weddell Sea tectonics and Gondwana break-up. Geol Soc Spec Publ 108:129–141

    Google Scholar 

  • Jokat W, et al. (2003) Timing and geometry of early Gondwana break-up. J Geophys Res 108(B9) 2428, doi: 10.1029/2002JB001802

    Article  Google Scholar 

  • Miller H, et al. (1990) A fine-scale stratigraphy of the eastern margin of the Weddell Sea. In: Bleil U, Thiede J (eds) Geological history of the Polar Oceans: Arctic versus Antarctica. 131

    Google Scholar 

L.5.5.2

  • Bohrmann G, Chin C, Petersen S, Sahling H, Schwarz-Schampera U, Greinert J, Lammers S, Rehder G, Daehlmann A, Wallmann K, Dijkstra S, Schenke HW (1999) Hydrothermal activity at Hook Ridge in the Central Bransfield Basin, Antarctica. Geo-Mar Lett 18: 277–284

    Article  Google Scholar 

  • Gonzáles-Ferrán O (1991) The Bransfield rift and its active volcanism. In: Thomson MRA, et al. (eds) Geological evolution of Antarctica. Cambridge University Press, Cambridge, UK, pp 505–509

    Google Scholar 

  • Lawver LA, Ghidella M, von Herzen RP, Keller RA, Klinkhammer GP, Chin CS (1996) Distributed, active extension in Bransfield Basin, Antarctic Peninsula: evidence from multibeam bathymetry. GSA Today 6(11):1–4

    Google Scholar 

L.5.5.3

  • Vogt PR, Crane K, Sundvor E (1994) Deep Pleistocene iceberg plowmarks on Yermak Plateau: sidescan and 3.5 kHz evidence for thick calving ice fronts and a possible marine ice sheet in the Arctic Ocean. Geology 22: 403–406

    ISI  Google Scholar 

  • Woodworth-Lynas CMT, Josenhans HW, Barrie JV, Lewis CFM, Parrott DR (1991) The physical process of seabed disturbance during iceberg grounding and scouring. Cont Shelf Res 11:939–961

    Google Scholar 

L.5.5.4

  • Land Information New Zealand (2003) Cape Adare and Cape Hallett, Possession Islands, Cape Adare to Cape Daniel. Available for downloading at http://www.hydro.linz.govt.nz/charts/catalogue/index.asp

    Google Scholar 

L.5.6

  • Krasheninnikov VA, Hall JK, Hirsch F, Benjamini C, Flexer A (2003) Geological framework of the Levant, Vol. I: Cyprus and Syria. Historical Productions-Hall Ltd., Jerusalem

    Google Scholar 

  • Krasheninnikov VA, Hall JK, Hirsch F, Benjamini C, Flexer A (2005) Geological framework of the Levant, Vol. II: The Levantine Basin and Israel. Historical Productions-Hall Ltd., Jerusalem, in press

    Google Scholar 

L.5.6.1

  • Rodríguez-Fernandez J, Martín-Penela AJ (1993) Neogene evolution of the Campo de Dalias and the surrounding offshore areas (northeastern Alboran Sea). Geodin Acta 6:255–270

    Google Scholar 

L.5.6.2

  • Acosta J, Muñoz A, Herranz P, Palomo P, Ballesteros CM, Vaquero M, Uchupi E (2001a) Geodynamics of the Emile Baudot Escarpment & tho Balearic Promontory, Western Mediterranean. Mar Petrol Geol 18/3: 349–369

    Article  Google Scholar 

  • Acosta J, Muñoz A, Herranz P, Palomo C, Ballesteros M, Vaquero M, Uchupi E (2001b) Pockmarks in the Ibiza Channel and western end of the of the Balearic promontory (western Mediterranean) revealed by multibeam mapping. Geo-Mar Lett 21:123–130

    Google Scholar 

  • Acosta J, Canals M, López-Martínez J, Muñoz A, Herranz P, Urgeles R, Palomo C, Casamor JL (2002) The Balearic promontory geomorphology (western Mediterranean): morpho-structure and active processes. Geomorphology 49:177–204

    ISI  Google Scholar 

  • Acosta J, Ancochea E, Canals M, Huertas MJ, Uchupi E (2004) Early Pleistocene volcanism in the Emile Baudot Seamount, Balearic promontory (western Mediterranean Sea). Mar Geol 207(1–4):247–257

    Google Scholar 

  • Fornos JJ, Rodriguez-Perea A, Massuti C, Pomar L, Acosta J, Herranz P, y Sanz JL (1989) Recent carbonate sedimentation on the Balearic platform: model for temperate-climate shelves. AAPG Bull 73:315–429

    Google Scholar 

  • Maldonado A, Swift DJP, Young RA, Han G, Nittrouer CA, DeMaster DJ, Rey J, Palomo C, Acosta AJ, Ballester A, Castellvi J (1983) Sedimentation on the Valencia continental shelf: preliminary results. Cont Shelf Res 2(2–3): 195–211

    Google Scholar 

L.5.6.3

  • Bovio E (2003) The autonomous underwater vehicle programme at the NATO Undersea Research Centre. UUVS03, September 2003, Southampton

    Google Scholar 

  • Bovio E, Schmidt H, Tyce R (2000) Autonomous underwater vehicle and ocean modelling networks. GOATS 2000 conference proceedings, August 2000, SACLANT-CEN CP-46

    Google Scholar 

  • Bovio E, Baralli F, Cecchi D (2004) Autonomous underwater vehicles for scientific and naval operations. IFAC Conference on Control Applications in Marine Systems, July 7–9 2004, Ancona

    Google Scholar 

  • Tyce R, Coelho E, Bovio E, MREP (2003) Maritime reconnaissance for NATO recognized environmental picture. SACLANTCEN CD-70, December 2003

    Google Scholar 

L.5.6.4

  • Lykousis V, Rousakis G, Alexandri M, Pavlakis P, Papoulia I (2002) Sliding and regional slope stability in active margins: North Aegean Trough (Mediterranean). Mar Geol 186:281–298

    Article  Google Scholar 

  • Papanikolaou D, Alexandri M, Nomikou P, Ballas D (2002) Morphotectonic structure of the western part of the North Aegean Basin, based on swath bathymetry. Mar Geol 190:465–492

    Article  Google Scholar 

L.5.6.5

  • Gazioğlu C, Yücel ZY, Doğan E (2004) Morphological features of major submarine landslides of Marmara Sea using by multi beam data. J Coastal Res 20(4)

    Google Scholar 

  • Gazioğlu C, Gokasan E, Algan O, Yucel Z, Tok B, Doăn E (2002) Morphologic features of the Marmara Sea from multibeam data. Mar Geol 190(1–2):397–420

    Google Scholar 

  • Gokasan E, Ustaömer T, Gazioğlu C, Yucel ZY, Öztürk K, Tur H, Ecevitoglu B, Tok B (2003) Morpho-tectonic evolution of the Marmara Sea inferred from multi-beam bathymetric and seismic data. Geo-Mar Lett 23(1):19–33

    Article  Google Scholar 

L.5.6.6

  • Huguen C (2001) Tectonique active et volcanisme boueux associé au sein de la Ride Méditerranéenne. Thése de Doctorat de l’ Université P. M. Curie de Paris, 260 pp

    Google Scholar 

  • Loncke L (2002) Structure et èvolution du delta profond du Nil. Thése de Doctorat de l’ Université P.M. Curie de Paris, 180 pp

    Google Scholar 

  • Loubrieu B, Satra C, Cagna R (2000) Cartographie par sondeur multifaisceaux de la Ride Méditerranéenne et des domaines voisins, éditions Ifremer/CIESM 2001, échelle 1/1500000ème. Deux cartes (Morphobathymétrie et mosaiques d’images acoustiques)

    Google Scholar 

  • Nielsen C (2003) Etude de zones de subduction en convergence hyper-oblique: Ride Méditerranéenne et Marge Indo-Birmane. Thése Université Paris XI-Orsay,172 pp

    Google Scholar 

  • Sardou O, Mascle J (2003) Cartographie par sondeur multifaisceaux du delta sous marin profond du Nil et des domaines voisins. Deux cartes (Morphobathymétrie et mosaiques d’images acoustiques), special publication CIESM/Géosciences-Azur

    Google Scholar 

  • Zitter T (2004) Mud volcanism and fluid emissions in Eastern Mediterranean neotectonic zones. Phd academic thesis, Vrije Universiteit Amsterdam, 99 pp

    Google Scholar 

L.5.6.7

  • Almagor G, Hall JK (1984) Morphology of the Mediterranean continental margin of Israel (a compilative summary and bathymetric chart). Geol Surv Israel Bulletin 77

    Google Scholar 

  • Ben-Avraham Z, Hall JK (1977) Geophysical survey of Mount Carmel structure and its extension into the eastern Mediterranean. J Geophys Res 82(5):793–801

    Article  Google Scholar 

  • Hall JK (1996) Historical bathymetric surveys of the inner continental shelf of the southeastern Levant. In Bogoch R, Weissbrod T (eds) Geological survey of Israel. Curr Res 10:40–46

    Google Scholar 

  • Neev D, Almagor G, Arad A, Ginzburg A, Hall JK (1976) The geology of southeastern Mediterranean Sea. GSI Bull 68

    Google Scholar 

L.5.7.1

  • Gelumbauskaite L-Z, Grigelis A, Cato I, Repecka M, Kjellin B (1999) Bottom topography and sediment maps of the Central Baltic Sea. LGT series of marine geological maps No. 1, SGU series of geological maps Ba No. 54, Scale 1: 500000

    Google Scholar 

  • Seifert T, Tauber F, Kayser B (2001) A high resolution spherical grid topography of the Baltic Sea — revised edition. Proceedings of the Baltic Sea Science Congress, Stockholm 25–29, November 2001

    Google Scholar 

L.5.7.2

  • Lambert DN, Carnaggio FS, Young DC (1994) Sediment classification system, patent application and award. Navy Case No. 75520. Patent Issued September 24, 1996, Patent Number 5559754

    Google Scholar 

  • Slowey NC, Bryant WR, Lambert DN (1996) Comparison of high-resolution seismic profiles and the geoacoustic properties of Eckernfoerder Bay sediments. Geo-Mar Lett 16:240–248

    Article  Google Scholar 

  • Tęgowski J (2003) Acoustical classification of the bottom sediments in the southern Baltic Sea. Quatern Int (after positive revisions)

    Google Scholar 

  • Tęgowski J, Klusek Z (1999) Acoustic properties of the Pomeranian Bay bottom sediments. Oceanologia 41(3): 475–487

    Google Scholar 

  • Tęgowski J, Łubniewski Z (2002) Seabed characterisation using spectral moments of the echo signal. Acta Acust Acustica 88(6):623–626

    Google Scholar 

  • Tęgowski J, Gorska N, Klusek Z (2003) Statistical analysis of acoustic echoes from underwater meadows in the eutrophic Puck Bay (southern Baltic Sea). Aquat Living Resour 16:215–221

    Google Scholar 

  • Walter DJ, Lambert DN, Young DC, Stephens KP (1997) Mapping sediment acoustic impedance using remote sensing acoustic techniques in a shallow-water carbonate environment. Geo-Mar Lett 17(4):260–267

    Article  Google Scholar 

L.5.7.3

  • Erbguth W, Jenish U, Streufert U (2003) Maritime safety in the Baltic Sea area. Final Report of the Baltic Sea Institute for Maritime and Environmental Law, Faculty of Law, Rostock University

    Google Scholar 

L.5.7.4

  • Gajewski L, Gajewski Ł, Rudowski S, Stachowiak A (2004) The relief of the offshore sea bottom at Karwia-Chałupy, Polish Baltic coast. Proc. Conf. “Rapid transgressions into semi-enclosed basins”, Polish Geological Institute Special Papers vol. 11, pp 91–94

    Google Scholar 

  • Klusek Z, Gorska N, Tęgowski J, Groza K, Faghani D, Gajewski L, Nowak J, Kruk-Dowgiałło L, Opioła R (2003) Acoustical techniques of underwater meadow monitoring in the Puck Bay (southern Baltic Sea). Hydroacoustics 6:79–80

    Google Scholar 

  • Rudowski S, Gajewski L (1998) Classification of sea floor geology by complex acoustic methods, at Chłapowo, Poland. Baltica 11:41–44

    Google Scholar 

L.5.7.5

  • Flodén T; SÖderberg P (1994) Shallow gas structures and gas migration models in crystalline bedrock areas offshore Sweden. Baltica 8:50–56

    Google Scholar 

  • Kulhanek O, Wahlström R (1981) Macroseismic observations in Sweden 1977–1979. Geological Survey Of Sweden C776:1–26

    Google Scholar 

  • Pihl J, Ivansson I, Karlsson P, Lennartsson R, Levonen M, More’n P, Nilsson B, Olsson M, Staaf Ö, Sundin G, Söderberg P (2003) Low frequency active sonar — reverberation and performance in the Baltic. Report FOI-0887-SE, pp 1–29, ISSN 1650-1942

    Google Scholar 

  • Söderberg P; Flodén T (1992) Gas seepages, gas eruptions and degassing structures in the seafloor along the Strömma tectonic lineament in the crystalline Stockholm Archipelago, east Sweden. Cont Shelf Res 12:1157–1171

    Google Scholar 

L.5.7.6

  • Lemke W (1998) Sedimentation und paläogeographische Entwicklung im westlichen Ostseeraum (Mecklenburger Bucht bis Arkonabecken) vom Ende der Weichselvereisung bis zur Litorinatransgression. Meereswissenschaftliche Berichte, Institut für Ostseeforschung Warnemünde, 31, 156 S

    Google Scholar 

  • Wunderlich J, Müller S (2003) High-resolution subbottom profiling using parametric acoustics. Int Ocean Sys 7(4):6–11

    Google Scholar 

  • Wunderlich J, Müller S (2003) Nonlinear echosounders for high-res sub-bottom profiling. Sea Technol 44(9):23–26

    ISI  Google Scholar 

  • Wunderlich J, Wendt G, Müller S (2003) Non-linear acoustics in echosounding and sediments. Hydro International 7(9):44–47

    Google Scholar 

L.5.7.7

  • Merklin LR, Levchenko OV (2002) Seismoacoustic investigations of IO RAS by parametric profilers (1988–2001). In: Kuznetzov VP, Mordvinov BG, Timoshenko VI (eds) Acoustical oceanological investigations and expeditions. Rostov-Don, Rostizdat, pp 396–413

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). The Sea Floor — Natural Formations. In: Sound Images of the Ocean in Research and Monitoring. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27910-5_5

Download citation

Publish with us

Policies and ethics