Extended Details: Gradient Index Films and Multilayers

Part of the Springer Series in Surface Sciences book series (SSSUR, volume 44)


Refractive Index Dielectric Function Characteristic Matrix Multilayer System Important Special Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. [1]
    A. Thelen: Design of Optical Interference Coatings (McGraw-Hill Book Company, 1989)Google Scholar
  2. [2]
    S.A. Furman and A.V. Tikhonravov: Basics of Optics of Multilayer Systems (Edition Frontieres, Paris 1992)Google Scholar
  3. [3]
    Daniel Poitras, Stéphane Larouche, and Ludvik Martinu: Design and plasma deposition of dispersion-corrected multiband rugate filters, Appl. Opt. 41, 5249–5255 (2002)PubMedGoogle Scholar
  4. [4]
    P.G. Verly and J.A. Dobrowolski: Iterative correction process for optical thin film synthesis with the Fourier transform method, Appl. Opt. 29, 3672–3684 (1990)Google Scholar
  5. [5]
    William H. Southwell: Using apodization functions to reduce sidelobes in rugate filters, Appl. Opt. 28, 5091–5094 (1989)Google Scholar
  6. [6]
    W.H. Southwell and Randolph L. Hall: Rugate filter sidelobe suppression using quintic and rugated quintic matching layers, Appl. Opt. 28, 2949–2951 (1989)Google Scholar
  7. [7]
    William H. Southwell: Coating design using very thin high-and low-index layers, Appl. Opt. 24, 457–460 (1985)Google Scholar
  8. [8]
    Thomas D. Rahmlow, Jr. and Jeanne E. Lazo-Wasem: Rugate and discrete hybrid filter designs, Proc. SPIE 3133, Int. Symp. on Optical Science, Engineering, and Instrumentation, San Diego 1997, 58–64Google Scholar
  9. [9]
    Alexander V. Tikhonravov: Some theoretical aspects of thin-film optics and their applications, Appl. Opt. 32, 5417–5426 (1993)Google Scholar
  10. [10]
    B. Harbecke: Coherent and incoherent reflection and transmission of multilayer structures, Appl. Phys. B 39, 165–170 (1986)CrossRefGoogle Scholar
  11. [11]
    J.A. Dobrowolski and S.H.C. Piotrowski: Refractive index as a variable in the numerical design of optical thin film systems, Appl. Opt. 21, 1502–1511 (1982)Google Scholar
  12. [12]
    J.A. Dobrowolski and D.G. Lowe: Optical thin film synthesis program based on the use of Fourier transforms (T), Appl. Opt. 17, 3039–3050 (1978)Google Scholar
  13. [13]
    J.P. Borgogno, P. Bousquet, F. Flory, B. Lazarides, E. Pelletier, and P. Roche: Inhomogeneity in films: limitation of the accuracy of optical monitoring of thin films, Appl. Opt. 20, 90–94 (1981)Google Scholar
  14. [14]
    J.A. Dobrowolski: Completely automatic synthesis of optical thin film systems, Appl. Opt. 4, 937–946 (1965)Google Scholar
  15. [15]
    А.Г. Свешников, А.В. Тихонравов: Мamемamuчщскuе Моделuровaнuе — Мamемamuческое Меmоды в Зaдaчaх Анaлuэa u Сuнmеэa Скоuсmых Сред т. 1, но. 7/1989. (Москва Наука, Главная Редакция Физико-Математической Литературы 1989) [engl.: A.G. Sveshnikov and A.V. Tikhonravov: Mathematical methods in analysis and synthesis tasks in thin film optics]Google Scholar
  16. [16]
    А.В. Тихонравов: Мamемamuкa кuбернеmuкa — Сuнmеэ Слоuсmых Сред 1987/5; (Иэдательство Знаниа Москва 1987) [engl.: A.V. Tikhonravov: Mathematical kybernetics — Synthesis of thin film systems]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations