Advertisement

Derivations from the Oscillator Model

Part of the Springer Series in Surface Sciences book series (SSSUR, volume 44)

Keywords

Refractive Index Absorption Line Dielectric Function Optical Constant Silver Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. [1]
    Bergmann-Schäfer: Lehrbuch der Experimentalphysik, Bd. III: Optik, 9. Aufl. (Walter de Gruyter, Berlin 1993) [engl.: Textbook of experimental physics, vol. III: Optics, 9th edn]Google Scholar
  2. [2]
    А.Н. Матвеев: Оnmuкa Высшая Школа (Москва 1985) (in Russ.) [engl: A.N. Matveev: Optics]Google Scholar
  3. [3]
    Aleksandra B. Djurišić and E. Herbert Li: Modeling the index of refraction of insulating solids with a modified Lorentz oscillator model, Appl. Opt. 37, 5291–5297 (1998)Google Scholar
  4. [4]
    A. Franke, A. Stendal, O. Stenzel, and C. vonBorczyskowski: Gaussian quadrature approach to the calculation of the optical constants in the vicinity of inhomogeneously broadened absorption lines, Pure Appl. Opt. 5, 845–853 (1996)CrossRefGoogle Scholar
  5. [5]
    Michael E. Thomas: A computer code for modeling optical properties of window materials, SPIE 1112: Window and Dome Technologies and Materials, 260–267 (1989)Google Scholar
  6. [6]
    Olaf Stenzel: Optical absorption of heterogeneous thin solid films, Adv. in Solid State Phys. 39, 151–160 (1999)Google Scholar
  7. [7]
    U. Kreibig and M. Vollmer: Optical Properties of Metal Clusters, Springer Series in Materials Science, Vol. 25 (Springer-Verlag, Heidelberg 1995)Google Scholar
  8. [8]
    L.D. Landau and E.M. Lifschitz: Lehrbuch der theoretischen Physik, Bd. VIII: Elektrodynamik der Kontinua (Akademie-Verlag, Berlin 1985) [engl.: Textbook of the theoretical physics, vol. VIII: Electrodynamics of continua]Google Scholar
  9. [9]
    Vladimir M. Shalaev: Optical Properties of Nanostructured Random Media (Spinger-Verlag, Berlin Heidelberg New York 2002)Google Scholar
  10. [10]
    D.E. Aspnes and J.B. Theeten, F. Hottier: Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry, Phys. Rev. B 20, 3292–3302 (1979)CrossRefGoogle Scholar
  11. [11]
    W. Theiss: The use of effective medium theories in optical Spectroscopy, Festkörperprobleme/Adv. in Solid State Phys. 33 (1993)Google Scholar
  12. [12]
    W.A. Weimer and M.J. Dyer: Tunable surface plasmon resonance silver films, Appl. Phys. Lett. 79, 3164–3166 (2001)CrossRefGoogle Scholar
  13. [13]
    V.A. Markel, V.M. Shalaev, P. Zhang, W. Huynh, L. Tay, T.L. Haslett, and M. Moskovits: Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters, Phys. Rev. B 59, 10903–10909 (1999)CrossRefGoogle Scholar
  14. [14]
    S.J. Oldenburg, R.D. Averitt, S.L. Westcott, and N.J. Halas: Nanoengineering of optical resonances. Chem. Phys. Lett. 288, 243–247 (1998)CrossRefGoogle Scholar
  15. [15]
    Alexander Wokaun: Surface-enhanced electromagnetic processes, Solid State Phys. 38, 223–294 (1984)Google Scholar
  16. [16]
    T. Yamaguchi, S. Yoshida, and A. Kinbara: Optical effect of the substrate on the anomalous absorption of aggregated silver films, Thin Solid Films 21, 173–187 (1974)CrossRefGoogle Scholar
  17. [17]
    Joachim R. Krenn und Franz R. Aussenegg: Nanooptik mit metallischen Strukturen, Physik Journal 1, Nr. 3, 39–45 (2002) [engl.: Nano-optics with metallic structures]Google Scholar
  18. [18]
    Johannes Bosbach, Franz Stietz und Frank Träger: Ultraschnelle Elektrodynamik in Nanoteilchen, Physikalische Blätter 57, Nr. 3, 59–62 (2001) [engl.: Ultra fast electrodynamics in nano-particles]Google Scholar
  19. [19]
    Franz Stietz und Frank Träger: Monodispersive Metallcluster auf Oberflächen, Physikalische Blätter 55, Nr. 9, 57–60 (1999) [engl.: Monodispersive metal clusters on surfaces]Google Scholar
  20. [20]
    U. Kreibig, M. Gartz, and A. Hilger: Mie resonances: Sensors for physical and chemical cluster interface properties; Ber. Bunsenges. Phys. Chem. 101, 1593–1604 (1997)Google Scholar
  21. [21]
    Rolf E. Hummel and P. Wißmann (Eds.): Handbook of Optical Properties, vol. II: Optics of Small Particles, Interfaces, and Surfaces (CRC Press, Boca Raton New York London Tokyo 1995)Google Scholar
  22. [22]
    O. Stenzel, S. Wilbrandt, A. Stendal, U. Beckers, K. Voigtsberger, and C. von Borczyskowski: The incorporation of metal clusters into thin organic dye layers as a method for producing strongly absorbing composite layers: an oscillator model approach to resonant metal cluster absorption, J. Phys. D: Appl. Phys. 28, 2154–2162 (1995)CrossRefGoogle Scholar
  23. [23]
    O. Stenzel, A. Stendal, M. Röder, and C. von Borczyskowski: Tuning of the plasmon absorption frequency of silver and indium nanoclusters via thin amorphous silicon films, Pure Appl. Opt. 6, 577–588 (1997)CrossRefGoogle Scholar
  24. [24]
    Bangyi Yang, Barbara L. Walden, Russell Messier, and William B. White: Computer simulation of the cross-sectional morphology of thin films, SPIE 821: Modeling of Optical Thin Films, 68-76 (1987)Google Scholar
  25. [25]
    E.E. Chain and D.M. Byrne: Microstructural information related to thin film optical measurements, Thin Solid Films 181, 323–332 (1989)CrossRefGoogle Scholar
  26. [26]
    Junzo Ishikawa, Yasuhiko Takeiri, Kiyoshi Ogawa, and Toshinori Takagi: Transparent carbon film prepared by mass-separated negative-carbon-ionbeam deposition, J. Appl. Phys 61, 2509–2515 (1987)Google Scholar
  27. [27]
    Eva C. Freeman and William Paul: Optical constants of rf sputtered hydrogenated amorphous Si, Phys. Rev. B 20, 716–728 (1979)CrossRefGoogle Scholar
  28. [28]
    M.H. Brodsky (Ed.): Amorphous Semiconductors (Springer-Verlag, Berlin Heidelberg New York 1979)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Personalised recommendations