Skip to main content

Erweiterte Methoden zur Beurteilung des Ernährungsstatus

  • Chapter
Infusionstherapie und Diätetik in der Pädiatrie
  • 877 Accesses

Zusammenfassung

Mit der im ▶ Kap. 11 »Monitoring« beschriebenen Überwachung ist es mög lich, den aktuellen Stoffwechsel und Hydratationszustand der Patienten zu beurteilen. In der klinischen Routine und Forschung ist es manchmal wünschenswert, den Ernährungsstatus (z. B. Über- oder Unterernährung, Adipositas) zu erfassen. Dies kann durch die Messung der Körperzusammensetzung bzw. der Größe der verschiedenen Körperkompartimente (▶ Kap. 2) geschehen. Hierzu sind verschiedene, mehr oder weniger invasive und präzise Methoden verfügbar, die sich grundsätzlich unterteilen lassen in:

  • Pars-pro-toto-Methoden: Von einem gemessenen Teil(Aspekt) wird auf das »Ganze« (Kompartiment) geschlossen).

  • Komplettmessmethoden: Der gesamte Körper wird bei der Messung erfasst.

Jede Methode geht von unterschiedlichen Grundannahmen aus, die z. T. nur für bestimmte Situationen validiert worden sind. Bei der Untersuchung von Kindern ist neben Aspekten, wie Genauigkeit, Aufwand und Praktikabilität, für den klinischen Alltag auch die kindliche Kooperationsbereitschaft/-fähigkeit in den verschiedenen Altersstufen zu berücksichtigen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Brook CG (1971) Determination of body composition of children from skinfold measurements. Arch Dis Child 46: 182–184

    PubMed  Google Scholar 

  • Bruin NC de, Velthoven CA van, Stijnen T, Juttmann RE, Degenhart HJ, Visser HK (1995) Body fat and fat-free mass in infants: new and classic anthropometric indexes and prediction equations compared with total-body electrical conductivity. Am J Clin Nutr 61: 1195–1205

    PubMed  Google Scholar 

  • Deurenberg P, Pieters JJ, Hautvast JG (1990) The assessment of the body fat percentage by skinfold thickness measurements in childhood and young adolescence. Br J Nutr 63:293–303

    Article  PubMed  Google Scholar 

  • Draper HH, Hadley M (1990) A review of recent studies on the metabolism of exogenous and endogenous malondialdehyde. Xenobiotica 20: 901–907

    PubMed  Google Scholar 

  • Draper HH, Polensek L, Hadley M, McGirr LG (1984) Urinary malondialdehyde as an indicator of lipid peroxidation in the diet and in the tissues. Lipids 19: 836–843

    PubMed  Google Scholar 

  • Durnin JV, Rahaman MM (1967) The assessment of the amount of fat in the human body from measurements of skinfold thickness. Br J Nutr 21: 681–689

    Article  PubMed  Google Scholar 

  • Fam SS, Morrow JD (2003) The isoprostanes: unique products of arachidonic acid oxidation — A review. Curr Med Chem 10: 1723–1740

    Article  PubMed  Google Scholar 

  • Fusch C, Dreyer E, Wenzel E, Wechsler RG, Moeller H (1992) Body composition: Vergleich von Impedanz-, Infrarot-und Caliper-Messung mit der D2O-Methode bei normalgewichtigen und adipösen Erwachsenen (abstract). 88. Jahrestagung der Deutschen Gesellschaft für Kinderheilkunde, September 1992, Hamburg. Monatsschr Kinderheilkd 140: 583

    Google Scholar 

  • Fusch C, Spirig N, Moeller H (1993a) Fourier transform infrared spectroscopy (FT-IR) measures 1H/2H ratios of native water samples with a precision comparable to that of isotope ratio mass spectrometry (IRMS). European Journal of Clinical Chemistry and Clinical Biochemistry, 31: 639–644

    PubMed  Google Scholar 

  • Fusch C, Scharrer B, Hungerland E, Moeller H (1993b) Total body water, lean mass and fat mass of healthy children. Isotopenprax — Isotopes Environment Health Stud 29: 125–131

    Google Scholar 

  • Fusch C, Jensen E, Horber F (1994) A 4-compartment model of body composition: combining deuterium dilution (D2O) with dual-energy X-ray absorption (DXA). European Society for Pediatric Research, Pediatric Week, Rotterdam, July 1994. Pediatr Res 36: 14A

    Google Scholar 

  • Fusch C, Slotboom J, Fuehrer U et al. (1999) Neonatal body composition: dual-energy X-ray absorptiometry, magnetic resonance imaging and three-dimensional chemical shift imaging vs. chemical analysis in piglets. Pediatr Res 46: 465–473

    PubMed  Google Scholar 

  • Jacob RA, Aiello GM, Stephensen CB, Blumberg JB, Milbury PE, Wallock LM, Ames BN (2003) Moderate antioxidant supplementation has no effect on biomarkers of oxidant damage in healthy men with low fruit and vegetable intakes. J Nutr 133: 740–743

    PubMed  Google Scholar 

  • Johnston JL, Leong MS, Checkland EG, Zuberbahler PC, Conger PR, Quinney HA (1988) Body fat assessed from body density and estimated from skinfold thickness in normal children and children with cystic fibrosis. Am J Clin Nutr 48: 1362–1366

    PubMed  Google Scholar 

  • Kritzler K, Schöch G, Topp H (1998) Expiration of ethane in rats under variously elevated inspiratory O2-concentrations. Arch Toxicol 72: 244–246

    Article  PubMed  Google Scholar 

  • Kromeyer-Hauschild K, Wabitsch M, Kunze D et al. (2001) Perzentile für den Body-Mass-Index für Kinder im Alter von 0 bis 18 Jahren. Monatsschr Kinderheilkd 149: 807–818

    Article  Google Scholar 

  • Lazarus R, Baur L, Webb K, Blyth F (1996) Body mass index in screening for adiposity in children and adolescents: systematic evaluation using receiver operating characteristic curves. Am J Clin Nutr 63: 500–506

    PubMed  Google Scholar 

  • Lubec G, Widness JA, Hayde M, Menzel D, Pollak A (1997) Hydroxyl radical generation in oxygen-treated infants. Pedriatics 100: 700–704

    Google Scholar 

  • Mitchell AD, Scholz AM, Convay JM (1998a) Body composition analysis of small pigs by dual energy x-ray absorptiometry. J Anim Sci 76:2392–2398

    PubMed  Google Scholar 

  • Mitchell AD, Scholz AM, Convay JM (1998b) Body composition analysis of pigs from 5 to 97 kg by dual energy X-ray absorptiometry. Appl Radiat Isot 49: 521–523

    Article  PubMed  Google Scholar 

  • Mitchell AD, Scholz AM, Pursel VG (2000) Dual energy X-ray absorptiometry measurements of the body composition of pigs of 90-to 130-kilograms body weight. Ann N Y Acad Sci 904:85–93

    PubMed  Google Scholar 

  • Pietrobelli A, Faith MS, Allison DB, Gallagher D, Chiumello G, Heymsfield SB (1998) Body mass index as a measure of adiposity among children and adolescents: a validation study. J Pediatr 132: 204–210

    PubMed  Google Scholar 

  • Reilly JJ, Wilson J, Durnin JV (1995) Determination of body composition from skinfold thickness: a validation study. Arch Dis Child 73: 305–310

    PubMed  Google Scholar 

  • Roberts LJ, Morrow JD (2000) Measurement of F(2)-isoprostanes as an index of oxidative stress in vivo (review). Free Radic Biol Med 28: 505–513

    Article  PubMed  Google Scholar 

  • Rolland-Cachera MF, Cole TJ, Sempe M, Tichet J, Rossignol C, Charraud A (1991) Body Mass Index variations: centiles from birth to 87 years. Eur J Clin Nutr 45: 13–21

    PubMed  Google Scholar 

  • Schmelzle HR, Fusch C (2002) Validation of neonatal skinfold thickness using dual-energy x-ray absorptiometry. Am J Clin Nutr 76: 1096–1100

    PubMed  Google Scholar 

  • Siri I (1961) Body composition from fluid spaces and density: analysis and methods. In: Brozek J, Henschel A (eds) Techniques for measuring body composition. National Academy of Sciences. Washington, DC, pp 223–234

    Google Scholar 

  • Slaughter MH, Lohman TG, Boileau RA et al. (1988) Skinfold equations for estimation of body fatness in children and youth. Hum Biol 60: 709–723

    PubMed  Google Scholar 

  • Topp H, Armbrust S, Lengger C et al. (2002) Renal excretion of 8-oxo-7,8-dihydro-2'-deoxyguanosine, degradation rates of RNA and metabolic rate in humans. Arch Biochem Biophys 402: 31–37

    Article  PubMed  Google Scholar 

  • Topp H, Unverzagt S, Rudloff S, Schöch G, Manz F, Fusch C (2003) Diurnal variation in the renal excretion of modified RNA catabolites in humans. Clin Sci 105: 195–202

    Article  PubMed  Google Scholar 

  • Wabitsch M, Braun U, Heinze E, Muche R, Mayer H, Teller W, Fusch C (1996) Body composition in 5–18 year old obese children and adolescents before and after weight reduction assessed by deuterium dilution and bioelectrical impedance measurement. Am J Clin Nutr 64: 1–6

    PubMed  Google Scholar 

  • Wiedenhöft A, Schröder C, Schmelzle HJ, Armbrust S, Fusch C (1999) Body mass index (BMI) vs. %Körperfett mittels Dual-Energy X-ray Absorptiometrie (DXA) bei chronisch kranken Kindern (abstract). 95. Jahrestagung der Deutschen Gesellschaft für Kinderheilkunde, München, September 1999. Monatsschr Kinderheilkd 147[Suppl 2]: 50

    Google Scholar 

  • Wuehl E, Fusch C, Schärer K, Mehls O, Schäfer F (1996) Assessment of total body water in paediatric patients on dialysis. Nephrol Dial Transplant 11: 75–80

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

(2005). Erweiterte Methoden zur Beurteilung des Ernährungsstatus. In: Jochum, F. (eds) Infusionstherapie und Diätetik in der Pädiatrie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27897-4_13

Download citation

  • DOI: https://doi.org/10.1007/3-540-27897-4_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-21195-2

  • Online ISBN: 978-3-540-27897-9

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics