Advertisement

C, N, P Fluxes in the Coastal Zone

Chapter
Part of the Global Change — The IGBP Series book series (GLOBALCHANGE)

Keywords

Coastal Zone Dissolve Inorganic Nitrogen Coastal System Dissolve Inorganic Phosphorus Curonian Lagoon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ADB (1997) Emerging Asia: changes and challenges. Asian Development Bank, Manila, PhilippinesGoogle Scholar
  2. Atkinson MJ, Smith SV (1983) C:N:P ratios of benthic marine plants. Limnology and Oceanography 28:568–574Google Scholar
  3. Baker S, Elderfield H (2002) Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2. Science 297(5582):833–836CrossRefPubMedGoogle Scholar
  4. Bartley JA, Buddemeier RW, Bennett DA (2001) Coastline complexity: a parameter for functional classification of coastal environments. Journal of Sea Research 46(2):87–97CrossRefGoogle Scholar
  5. Bennett EM, Carpenter SR, Caraco NF (2001) Human impact on erodable phosphorus and eutrophication: a global perspective. BioScience 51:227–234Google Scholar
  6. Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. American Journal of Science 282:451–473Google Scholar
  7. Billen G, Lancelot C, Meybeck M (1991) N, P and Si retention along the aquatic continuum from land to the ocean. In: Mantoura RF, Martin JM, Wollast R (eds) Ocean margin processes in global change. WR Wiley & Sons, pp 19–44Google Scholar
  8. Botero L (1990) Massive mangrove mortality on the Caribbean coast of Colombia. Vida Silvestre Neotropical 2:77–78Google Scholar
  9. Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In: Fasham MJR (ed) Ocean biogeochemistry. Springer Verlag, Berlin, pp 157–193Google Scholar
  10. Buddemeier, RW, Smith SV, Swaney DP, Crossland CJ (2002) The role of the coastal ocean in the disturbed and undisturbed nutrient and carbon cycles. LOICZ Reports & Studies, LOICZ, Texel, The Netherlands, No. 24Google Scholar
  11. Canfield DE (1989) Sulfate reduction and oxic respiration in marine sediments: implications for organic carbon preservation in euxinic environments. Deep-Sea Research 36:121–138CrossRefPubMedGoogle Scholar
  12. Caraco NF, Cole JJ (1999) Human impacts on nitrate export: an analysis using major world rivers. Ambio 28:167–170Google Scholar
  13. Cardona P, Botero L (1998) Soil characteristics and vegetation structure in a heavily deteriorated mangrove forest in the Caribbean coast of Colombia. Biotropica 30:24–34Google Scholar
  14. Chen C-TA, Liu KK, Macdonald R (2003) Continental margin exchanges. In: Fasham MJR (ed) Ocean Biogeochemistry. Springer, Berlin, pp 53–97Google Scholar
  15. Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez FP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cachlan WP, Landry MR, Constantinou J, Rollwagen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature 383:495–501CrossRefGoogle Scholar
  16. Conley DJ, Malone TC (1992) Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series 81:121–128Google Scholar
  17. Conley DJ, Schelske CL, Stoermer EF (1993) Modification of the biogeochemical cycle of silica with eutrophication. Marine Ecology Progress Series 101:179–192Google Scholar
  18. Cooper SR, Brush GS (1991) Long-term history of Chesapeake Bay anoxia. Science 254:992–996Google Scholar
  19. Couto ECG, Zyngier NAC, Gomes VR, Knoppers BA, Landim de Souza MF (2002) Marica-Guarapina coastal lagoons, Rio de Janeiro State. In: Dupra V, Smith SV, Marshall Crossland JI, Crossland CJ (eds) Estuarine systems of the South American region: carbon, nitrogen and phosphorus fluxes. LOICZ Reports and Studies, LOICZ, Texel, The Netherlands, No.15, pp 19–21Google Scholar
  20. da Silva A, Young AC, Levitus S (1994) Atlas of surface marine data 1994, vol 1: Algorithms and procedures. NOAA Atlas NESDIS 6, US Department of Commerce, Washington, DC (also: http://ingrid.ldgo.columbia.edu/SOURCES/.DASILVA/.SMD94/.halfbyhalf/)Google Scholar
  21. Delgadillo F, Segovia Zavala JA (1997) Bahia San Luis Gonzaga, Baja California. In: Smith SV, Ibarra-Obando S, Boudreau PR, Camacho-Ibar VF (eds) Comparison of carbon, nitrogen and phosphorus fluxes in Mexican coastal lagoons. LOICZ Reports and Studies, LOICZ, Texel, The Netherlands, No. 10 pp 16–20.Google Scholar
  22. Dortch Q, Rabalais NN, Turner RE, Qureshi NA (2001) Impacts of changing Si/N ratios and phytoplankton species composition. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems. Coastal and estuarine studies. American Geophysical Union, pp 37–48Google Scholar
  23. Downing JA, McClain M, Twilley R, Melack JM, Elser J, Rabalais NN, Lewis WM, Turner RE, Corredor J, Soto D, Yanez-Arancibia A, Howarth RW (1999) The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems. Geochemistry 46:109–148Google Scholar
  24. Dugdale RC, Wilkerson FP (1998) Silicate regulation of new production in the eastern equatorial Pacific. Nature 391:270:273CrossRefGoogle Scholar
  25. Dunteman GH (1989) Principal components analysis. Sage Publications, Newbury Park, CAGoogle Scholar
  26. Dupra VC (2003) Nutrient fluxes in various coastal ecosystems of the South China Sea perturbed by human activities. Masters Thesis, Marine Science Institute, University of the PhilippinesGoogle Scholar
  27. Dupra V, Smith SV, Marshall Crossland JI, Crossland CJ (2000a) Estuarine systems of the South China Sea region: carbon, nitrogen and phosphorus fluxes. LOICZ Reports and Studies, LOICZ, Texel, The Netherlands, No. 14Google Scholar
  28. Dupra V, Smith SV, Marshall Crossland JI, Crossland CJ (2000b) Estuarine systems of the East Asia region: carbon, nitrogen and phosphorus fluxes. LOICZ Reports and Studies, LOICZ, Texel, The Netherlands, No. 16Google Scholar
  29. Frankignoulle M, Abril G, Borges A, Bourge I, Canon C, DeLille B, Libert E, Theate J-M (1998) Carbon dioxide emission from European estuaries. Science 282:434–436CrossRefPubMedGoogle Scholar
  30. Froelich PN (1988) Kinetic control of dissolved phosphate in natural rivers and estuaries: a primer on the phosphate buffer mechanism. Limnology and Oceanography 33:649–668Google Scholar
  31. Furnas M (2003) Catchments and corals: terrestrial runoff to the Great Barrier Reef. Australian Institute of Marine Science, Townsville, AustraliaGoogle Scholar
  32. Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71PubMedGoogle Scholar
  33. Gattuso J-P, Frankignoulle M, Smith SV (1999) Measurement of community metabolism and significance in the coral reef source-sink debate. Proceedings of the National Academy of Science 96:13017–13022CrossRefGoogle Scholar
  34. GEMS (1996) Annotated digital atlas of global water quality. GEMS Water Collaborating Center, Ontario, Canada. Diskette and at http://www.cciw.ca/gems/intro.htmlGoogle Scholar
  35. Gordon DC Jr, Boudreau PR, Mann KH, Ong J-E, Silvert WL, Smith SV, Wattayakorn G, Wulff F, Yanagi T (1996) LOICZ Biogeochemical Modelling Guidelines. LOICZ Reports and Studies, LOICZ, Texel, The Netherlands, No.5Google Scholar
  36. Guinotte JM, Buddemeier RW, Kleypas JA (2003) Future coral reef habitat marginality: temporal and spatial effects of climate change in the Pacific basin. Coral Reefs 22(4):552–558CrossRefGoogle Scholar
  37. Hall J, Smith SV, Boudreau PR (eds) (1996) Report on the international workshop on continental shelf fluxes of carbon, nitrogen and phosphorus. LOICZ Reports and Studies No. 9/JGOFS Report No. 22, LOICZ, Texel, The NetherlandsGoogle Scholar
  38. Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Marine Chemistry 49:81–115CrossRefGoogle Scholar
  39. Holligan PM, Reiners WA (1992) Predicting the responses of the coastal zone to global change. Advances in Ecological Research 22:211–255Google Scholar
  40. Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) (2001) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC), Cambridge University Press, Cambridge UK, New York USA (http://www.ipcc.ch/)Google Scholar
  41. Howarth, RW, Billen G, Swaney D, Townsend A, Jaworski N, Lajtha K, Downing JA, Elmgren R, Caraco N, Jordan T, Berendse F, Freney J, Kudeyarov V, Murdoch P, Zhao-Liang Z (1996) Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139CrossRefGoogle Scholar
  42. Humborg C, Conley DJ, Rahm L, Wulff F, Cociasu A, Ittekkot V (2000) Silicon retention in river basins: far-reaching effects on biogeochemistry and aquatic food webs in coastal marine environments. Ambio 29(1):45–50Google Scholar
  43. Ittekkot V, Humborg C, Schafer P (2000) Hydrological alterations and marine biogeochemistry: a silicate issue? BioScience 50(9):776–782Google Scholar
  44. Jacobson MC, Charlson RJ, Rohde H, Orians GH (2000) Earth system science. International Geophysics Series, Academic Press, Amsterdam, vol 72Google Scholar
  45. Jaffe DA (2000) The nitrogen cycle. Chapter 12 in: Jacobson MC, Charlson RJ, Rohde H, Orians GH (2000) Earth system science. International Geophysics Series, Academic Press. Amsterdam, vol 72, pp 322–342Google Scholar
  46. Jahnke RA (2000) The phosphorus cycle. Chapter 14. In: Jacobson MC, Charlson RJ, Rohde H, Orians GH (2000) Earth System Science. International Geophysics Series, Academic Press. Amsterdam, vol 72, pp 360–376Google Scholar
  47. Jickells TD (1998) Nutrient biogeochemistry of the coastal zone. Science 281:217–222CrossRefPubMedGoogle Scholar
  48. Justic D, Rabalais NN, Turner RE, Dortch Q (1995) Changes in nutrient structure of river-dominated coastal waters: stoichiometric nutrient balance and its consequences. Estuarine, Coastal and Shelf Science 40:339–356Google Scholar
  49. Karl DM, Bates NR, Emerson S, Harrison PJ, Jeandel C, Llinás O, Liu K-K, Marty J-C, Michaels AF, Miquel JC, Neuer S, Nojiri Y, Wong CS (2003) Temporal studies of biogeochemical processes determined from ocean time-series observations during the JGOFS era. In: Fasham MJR (ed) Ocean Biogeochemistry. Springer, Berlin, pp 237–267Google Scholar
  50. Keeling CD, Whorf TP, Wahlen M, van der Plicht J (1995) Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375:666–670CrossRefGoogle Scholar
  51. Kleypas JA, Buddemeier RW, Archer D, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120CrossRefPubMedGoogle Scholar
  52. Kleypas JA, Buddemeier RW, Gattuso J-P (2001) The future of coral reefs in an age of global change. International Journal of Earth Sciences 90:426–437CrossRefGoogle Scholar
  53. Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson M (2000) Effect of calcium carbonate saturation state on the rate of calcification of an experimental coral reef. Global Biogeochemical Cycles 14:639–654CrossRefGoogle Scholar
  54. Laws E (1997) Mathematical methods for oceanographers. Wiley, New York, USAGoogle Scholar
  55. Marubini F, Ferrier-Pages C, Cuif J-P (2003) Suppression of growth in scleractinian corals by decreasing ambient carbonate ion concentration: a cross-family comparison. Proceedings of the Royal Society B 270(1511):179–184CrossRefPubMedGoogle Scholar
  56. Maxwell BA, Buddemeier RW (2001) Coastal typology development with heterogeneous data sets. Regional Environmental Change 3:77–87CrossRefGoogle Scholar
  57. Meybeck M (1982) Carbon, nitrogen and phosphorus transport by world rivers. American Journal of Science 282:401–450Google Scholar
  58. Meybeck M (1998) The IGBP water group: a response to a growing global concern. Global Change Newsletter 36:8–12Google Scholar
  59. Meybeck M, Ragu A (1997) River discharges to the oceans: an assessment of suspended solids, major ions and nutrients. GEMS/EAP ReportGoogle Scholar
  60. Meybeck M, Chapman D, Helmer R (1989) Global water quality. WHO/UNEP, Blackwell Inc, OxfordGoogle Scholar
  61. Michaels AF, Olson D, Sarmiento J, Ammerman J, Fanning K, Jahnke R, Knap AH, Lipschultz F, Prospero J (1996) Inputs, losses and transformations of nitrogen and phosphorus in the pelagic North Atlantic Ocean. Biogeochemistry 35:181–226CrossRefGoogle Scholar
  62. Milliman JD, Droxler AW (1996) Neritic and pelagic carbonate sedimentation in the marine environment: ignorance is not bliss. Geologische Rundschau 85:496–504CrossRefGoogle Scholar
  63. Milliman JD, Syvitski JPM (1992) Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. Journal of Geology 100:525–544Google Scholar
  64. Nedwell DB, Kickells TD, Trimmer M, Sanders R (1999) Nutrients in estuaries. Advances in Ecological Research 29:43–92Google Scholar
  65. Nixon SW (1995) Coastal marine eutrophication: a definition, social causes and future concerns. Ophelia 41:199–219Google Scholar
  66. Nixon SW, Ammerman JW, Atkinson LP, Berounsky VM, Billen G, Boicourt WC, Boynton WR, Church TM, Ditoro DM, Elmgren R, Garber JH, Giblin AE, Jahnke RA, Owen NJP, Pilson MEQ, Seitzinger SP (1996) The fate of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. Biogeochemistry 35:141–180CrossRefGoogle Scholar
  67. Officer CB, Ryther JR (1980) The possible importance of silicon in marine eutrophication. Marine Ecology Progress Series 3:83–91Google Scholar
  68. Pernetta, JC, Milliman JD (1995) Land-Ocean Interactions in the Coastal Zone — Implementation Plan. IGBP Report 33Google Scholar
  69. Prentice IC, Farquhar GD, Fasham MJR, Goulden ML, Heiman M, Jaramello VJ, Kheshgi HS, Le Quere C, Scholes RJ, Wallace DWR (2001) The carbon cycle and atmospheric carbon dioxide. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Xiaosu D (eds) Climate change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge U.K. and New York, USA, pp 183–239Google Scholar
  70. Rabalais NN, Turner RE, Scavia D (2002) Beyond science and into policy: Gulf of Mexico hypoxia and the Mississippi River. BioScience 52:129–142Google Scholar
  71. Redfield AC (1958) The biological control of chemical actors in the environment. American Scientist 46:205–222Google Scholar
  72. Redfield AC, Ketchum BH, Richards FA (1963) The influence of organisms on the composition of sea-water. In: Hill MN (ed) The Sea, vol 2, pp 26–77Google Scholar
  73. Reeburgh WS (1983) Rates of biogeochemical processes in anoxic sediments. Annual Review of Earth & Planetary Science 11:269–298Google Scholar
  74. Ricker WE (1973) Linear regression in fisheries research. Journal of the Fisheries Research Board of Canada 30(3):409–434Google Scholar
  75. Riebesell U, Zondervan I, Rost B, Tortell PD, Zeebe RE, Morel FM (2000) Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407:364–367CrossRefPubMedGoogle Scholar
  76. Rivera-Monroy VH, Jonsson BF, Twilley RR, Casas-Monroy O, Castaneda E, Montiel R, Mancera E, Troncoso W, Daza-Monroy F (2002) Cienaga Grande de Santa Maria: a tropical coastal lagoon in a deltaic geomorphic setting. In: Camacho-Ibar V, Wulff F, Dupra V, Smith SV, Marshall Crossland JI, Crossland CJ (2002) Estuarine systems of the Latin American region (Regional Workshop V) and estuarine systems of the Arctic region: carbon, nitrogen and phosphorus fluxes. LOICZ Reports and Studies, LOICZ, Texel, The Netherlands, No. 23, pp 22–27Google Scholar
  77. San Diego-McGlone ML, Smith SV, Nicolas VF (2000) Stoichiometric interpretations of C:N:P ratios in organic waste materials. Marine Pollution Bulletin 40:325–330CrossRefGoogle Scholar
  78. Sandhei PT (2003) Effects of land use on the concentration of dissolved inorganic nitrogen and phosphorus in global stream systems. M.S. Thesis, Geography, University of Kansas, Lawrence, KansasGoogle Scholar
  79. Sarmiento JL, Sundquist ET (1992) Revised budget for the oceanic uptake of anthropogenic carbon dioxide. Nature 356:589–593CrossRefGoogle Scholar
  80. Scavia D, Field JC, Boesch DF, Buddemeier RW, Burkett V, Cayan DR, Fogarty M, Harwell MA, Howarth RW, Mason C, Reed DJ, Royer TC, Sallenger AH, Titus JG (2002) Climate change impacts on US coastal and marine ecosystems. Estuaries 25:149–164Google Scholar
  81. Schimel DS (1995) Terrestrial ecosystems and the carbon cycle. Global Change Biology 1:77–91Google Scholar
  82. Schindler DW (1999) The mysterious missing sink. Nature 398:106–109CrossRefGoogle Scholar
  83. Schlesinger WH (1997) Biogeochemistry, 2nd edn. Academic Press, San DiegoGoogle Scholar
  84. Scialabba N (1998) Integrated coastal zone management and agriculture, forestry and fisheries. FAO Guidelines. Environment and Natural Resources Service, FAO, RomeGoogle Scholar
  85. Seitzinger SP (1988) Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography 33:702–724Google Scholar
  86. Seitzinger SP, Kroeze C, Bouwman AF, Caraco N, Dentener F, Styles RV (2002) Global paterns of dissolved inorganic and particulate nitrogen input to caostal systems: recent contributions and future projections. Estuaries 25:640–655Google Scholar
  87. Smayda TJ (1990) Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In: Granéli E, Sundström B, Edler R, Anderson DM (eds) Toxic marine phytoplankton. Elsevier, New York, pp 29–40Google Scholar
  88. Smith SV (1985) Physical, chemical and biological characteristics of CO2 gas flux across the air-water interface. Plant, Cell and Environment 8:387–398Google Scholar
  89. Smith SV, Hollibaugh JT (1993) Coastal metabolism and the oceanic organic carbon balance. Reviews of Geophysics 31:75–89CrossRefGoogle Scholar
  90. Smith SV, Mackenzie FT (1987) The ocean as a net heterotrophic system: implications from the carbon biogeochemical cycle. Global Biogeochemical Cycles 1:187–198Google Scholar
  91. Smith SV, Renwick WH, Buddemeier RW, Crossland CJ (2001) Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles 15:697–707CrossRefGoogle Scholar
  92. Smith SV, Swaney DP, Talaue-McManus L, Bartley JD, Sandhei PT, McLaughlin CJ, Dupra VC, Crossland CJ, Buddemeier RW, Maxwell BA, Wulff F (2003) Humans, hydrology, and the distribution of inorganic nutrient loading to the ocean. BioScience 53:235–245Google Scholar
  93. Sokal RL, Rohlf FJ (1995) Biometry, 3rd edn. WH Freeman, New YorkGoogle Scholar
  94. Stallard RF (1998) Terrestrial sedimentation and the carbon cycle: coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12:231–257CrossRefGoogle Scholar
  95. Stewart JS (2000) Tidal energetics: studies with a barotropic model. PhD thesis, University of Colorado, Boulder, CO.Google Scholar
  96. Sverdrup HU, Johnson MW, Fleming RH (1942) The oceans. Prentice-Hall, New YorkGoogle Scholar
  97. Takahashi T, Broecker WS, Langer S (1985) Redfield ratio based on chemical data from isopycnal surfaces. Journal of Geophysical Research 90:6907–6924Google Scholar
  98. Talaue-McManus L (2000) Transboundary diagnostic analysis for the South China Sea. EAS/RCU Technical Report Series No. 14. UNEP, Bangkok, ThailandGoogle Scholar
  99. Talaue-McManus L, Kremer HH, Marshall-Crossland JI (2001) SARCS/WOTRO/LOICZ: biogeochemical and human dimensions of coastal functioning and change in Southeast Asia. Final report of the SARCS/WOTRO/LOICZ project 1996–1999. LOICZ Reports and Studies, LOICZ, Texel, The Netherlands, No.17Google Scholar
  100. Thom BG (1982) Mangrove ecology: a geomorphological perspective. In: Snedekar SC, Snedakar JG (eds) The mangrove ecosystem: research methods. UNESCO, Paris, pp 3–7Google Scholar
  101. Thomas H, Bozec Y, Elkalay K, de Baar HJW (2004) Enhanced open ocean storage of CO2 from shelf sea pumping. Science 304:1005–1008CrossRefPubMedGoogle Scholar
  102. Turner RE, Rabalais NN (1991) Changes in Mississippi River water quality this century and implications for coastal foodwebs. Bioscience 41:140–147Google Scholar
  103. Turner RE, Quveshi N, Rabalais NN, Dortch Q, Justic D, Shaw RF, Cope J (1998) Fluctuating silicate:nitrate ratios and coastal plankton food webs. Proceedings National Academy of Science, USA 95:13048–13051Twilley RR, Rivera-Monroy VH, Chen R, Botero L (1999) Adapting an ecological mangrove model to simulate trajectories in restoration ecology. Marine Pollution Bulletin 37:404–419Google Scholar
  104. USGS (2001) Hydro1K elevation derivative database. United States Geological Survey. http://edcdaac.usgs.gov/gtopo30/hydro/Google Scholar
  105. van Drecht G, Bouwman AF, Koop JM, Meinardi C, Beusen A (2001) Global pollution of surface water from point and non-point sources of nitrogen. The Scientific World, vol 1, pp 632–641Google Scholar
  106. Vitousek PM, Aber JD, Howarth RW, Likens GE, Matson PA, Schindler DW, Schlesinger WH, Tilman DG (1997) Human alterations of the global nitrogen cycle: sources and consequences. Ecological Applications 7:737–750Google Scholar
  107. Ware JR, Smith SV, Reaka-Kudla ML (1992) Coral reefs: sources or sinks of atmospheric Co2? Coral Reefs 11:127–130CrossRefGoogle Scholar
  108. Watson A, Whitfield M (1985) Composition of particles in the global ocean. Deep-Sea Research 32:1023–1039CrossRefGoogle Scholar
  109. Webster IT, Parslow JS, Smith SV (2000) Implications of spatial and temporal variation for biogeochemical budgets of estuaries. Estuaries 23: 341–350Google Scholar
  110. WRI (2000) World resources 2000–2001. People and ecosystems. The fraying web of life. World Resources Institute, Washington DC, USAGoogle Scholar
  111. Wulff F, Rahm L, Larsson P (2001) A systems analysis of the Baltic Sea. Springer-Verlag, BerlinGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

There are no affiliations available

Personalised recommendations