Advertisement

Gold Nanoparticles in Bioanalytical Assays and Sensors

  • Nguyen Thi Kim Thanh
  • Aude Vernhet
  • Zeev Rosenzweig
Part of the Springer Series on Chemical Sensors and Biosensors book series (SSSENSORS, volume 3)

Abstract

In this review we report two major applications of gold nanoparticles in the field of bioassay and sensing. The first application is a unique, sensitive, and highly specific immunoassay system for antibodies using gold nanoparticles. The assay is based on the aggregation of gold nanoparticles that are coated with protein antigens in the presence of their corresponding antibodies. Aggregation of the gold nanoparticles results in an absorption change at 620 nm that is used to calibrate the amount of antibodies. The effects of pH, temperature, and the concentration of protein A-coated gold nanoparticles on the sensitivity of the assay were investigated. A dynamic range of two orders of magnitude and a limit of detection of 1 μg/mL of anti-protein A were observed.

The second application of nanoparticles is luminescence nanosensors, which have their potential use as site-specific probes in samples of limited dimensions. Novel methods of nanosensor fabrication to obtain nanosensors with improved analytical properties are reported. A new approach for controlled synthesis of fluorescence nanosensors for pH measurements is also presented. Gold nanoparticles were used as a supportive matrix for the sensing component. Polymer layers that include the active sensing element were deposited on the gold nanoparticles surface using an electrostatic-based layer by layer deposition method. Polymer layers of alternating charges were deposited on the particle surface through attractive electrostatic interactions. Such method enabled a more precise control of the size, size distribution and density of fluorophores on each particle. The study shows that this is an effective way to fabricate particle-based fluorescent nanosensors that are stable and effective in measuring the pH in aqueous media.

Keywords

Gold Nanoparticles Allylamine Hydrochloride Coated Gold Gold Nanoparti Bioanalytical Assay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alivisatos P (2004) Nat Biotechnol 22:47CrossRefGoogle Scholar
  2. 2.
    Hayat MA (ed) (1989) Colloidal gold, principles, methods and applications. Academic, New YorkGoogle Scholar
  3. 3.
    Bendayan M (2000) Biotech Histochem 75:203Google Scholar
  4. 4.
    Hainfeld JF, Powell RD (2000) J Histochem Cytochem 48:471Google Scholar
  5. 5.
    Jurgens L, Nichtl A, Werner U (1999) Cytometry 37:87Google Scholar
  6. 6.
    Neagu C, Vanderwerf KO, Putman CAJ, Kraan YM, Degrooth BG, Vanhulst NF, Greve J (1994) J Struct Biol 112:32CrossRefGoogle Scholar
  7. 7.
    Horisberger M, Clerc MF (1985) Histochemistry 82:219CrossRefGoogle Scholar
  8. 8.
    Kim YJ, Johnson RC, Hupp JT (2001) Nano Lett 1:165Google Scholar
  9. 9.
    Otsuka H, Akiyama Y, Nagasaki Y, Kataoka K (2001) J Am Chem Soc 123:8226CrossRefGoogle Scholar
  10. 10.
    Mirkin CA (2000) Inorg Chem 39:2258CrossRefGoogle Scholar
  11. 11.
    Reynolds RA, Mirkin CA, Letsinger RL (2000) Pure Appl Chem 72:229Google Scholar
  12. 12.
    Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL (1998) J Am Chem Soc 120:1959CrossRefGoogle Scholar
  13. 13.
    Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA (1997) Science 277:1078CrossRefGoogle Scholar
  14. 14.
    Thanh NTK, Rosenzweig Z (2002) Anal Chem 74:1624CrossRefGoogle Scholar
  15. 15.
    Takeuchi Y, Ida T, Kimura K (1996) Surf Rev Lett 3:1205CrossRefGoogle Scholar
  16. 16.
    Kreibig U, Genzel L (1985) Surf Sci 156:678CrossRefGoogle Scholar
  17. 17.
    Ji J, Rosenzweig N, Griffin C, Rosenzweig Z (2000) Anal Chem 72:3497CrossRefGoogle Scholar
  18. 18.
    Park EJ, Brasuel M, Behrend C, Philbert MA, Kopelman R (2003) Anal Chem 75:3784Google Scholar
  19. 19.
    Xu H, Aylott JW, Kopelman R (2002) Analyst 127:1471CrossRefGoogle Scholar
  20. 20.
    Clark HA, Barker SLR, Brasuel M, Miller MT, Monson E, Parus S, Shi ZY, Song A, Thorsrud B, Kopelman R, Ade A, Meixner W, Athey B, Hoyer M, Hill D, Lightle R, Philbert MA (1998) Sens Actuator B 51:12Google Scholar
  21. 21.
    Chen YF, Rosenzweig Z (2002) Anal Chem 74:5132Google Scholar
  22. 22.
    Pierce DW, Vale RD (1999) Methods in cell biology, vol 58. Academic, LondonGoogle Scholar
  23. 23.
    Takeuchi Y, Ida T, Kimura K (1997) J Phys Chem B 101:1322CrossRefGoogle Scholar
  24. 24.
    Turkevich J, Stevenson PC, Hillier J (1951) Discuss Faraday Soc 11:55CrossRefGoogle Scholar
  25. 25.
    Fens G (1973) Nat Phys Sci 241:20Google Scholar
  26. 26.
    Grabar KC, Freeman RG, Hommer MB, Natan MJ (1995) Anal Chem 67:735CrossRefGoogle Scholar
  27. 27.
    Decher G (1997) Science 277:1232–1237CrossRefGoogle Scholar
  28. 28.
    Decher G, Hong JD (1991) Makromol Chem Macromol Symp 46:321–327Google Scholar
  29. 29.
    Forzani ES, Otero M, Perez MA, Teijelo ML, Calvo EJ (2002) Langmuir 18:4020–4029Google Scholar
  30. 30.
    Baba A, Kaneko F, Advincula RC (2000) Colloids Surf A 173:39–49CrossRefGoogle Scholar
  31. 31.
    Li WJ, Wang Z, Sun CQ, Xian M, Zhao MY (2000) Anal Chim Acta 418:225–232CrossRefGoogle Scholar
  32. 32.
    Cheng YF, Murtomaki L, Corn RM (2000) J Electroanal Chem 483:88–94CrossRefGoogle Scholar
  33. 33.
    Lu ZQ, Lvov Y, Jansson I, Schenkman JB, Rusling JF (2000) J Colloid Interface Sci 224:162–168CrossRefGoogle Scholar
  34. 34.
    Lvov YM, Kamau GN, Zhou DL, Rusling JF (1999) J Colloid Interface Sci 212:570–575CrossRefGoogle Scholar
  35. 35.
    Caruso F, Niikura K, Furlong DN, Okahata Y (1997) Langmuir 13:3422–3426Google Scholar
  36. 36.
    Schmitt J, Decher G, Dressick WJ, Brandow SL, Geer RE, Shashidhar R, Calvert JM (1997) Adv Mater 9:61CrossRefGoogle Scholar
  37. 37.
    Gittins DI, Caruso F (2001) J Phys Chem B 105:6846–6852CrossRefGoogle Scholar
  38. 38.
    Gittins DI, Caruso F (2000) Adv Mater 12:1947–1955CrossRefGoogle Scholar
  39. 39.
    Maeland A, Flanagan TB (1964) Can J Phys 42:2364Google Scholar
  40. 40.
    Palegrosdemange C, Simon ES, Prime KL, Whitesides GM (1991) J Am Chem Soc 113:12–20Google Scholar
  41. 41.
    Abbott NL, Whitesides GM (1994) Langmuir 10:1493–1497Google Scholar
  42. 42.
    Hasan M, Bethell D, Brust M (2002) J Am Chem Soc 124:1132–1133CrossRefGoogle Scholar
  43. 43.
    Caruso F, Mohwald H (1999) J Am Chem Soc 121:6039–6046CrossRefGoogle Scholar
  44. 44.
    Sukhorukov GB, Donath E, Lichtenfeld H, Knippel E, Knippel M, Budde A, Mohwald H (1998) Colloids Surf A 137:253–266CrossRefGoogle Scholar
  45. 45.
    Lang I, Scholz M, Peters R (1986) J Cell Biol 102:1183–1190CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nguyen Thi Kim Thanh
    • 1
    • 2
  • Aude Vernhet
    • 3
  • Zeev Rosenzweig
    • 1
  1. 1.Department of ChemistryUniversity of New OrleansNew OrleansUSA
  2. 2.Centre for Nanoscale Science, Department of Chemistry & School of Biological SciencesUniversity of LiverpoolLiverpoolUK
  3. 3.Campus ENSAM/INRA, bât. 28, Maître de Conférences ENSA-MontpellierUMR Sciences pour l”nologieMontpellierFrance

Personalised recommendations