Skip to main content

Cataluminescence-Based Gas Sensors

  • Chapter
Frontiers in Chemical Sensors

Part of the book series: Springer Series on Chemical Sensors and Biosensors ((SSSENSORS,volume 3))

Abstract

Cataluminescence (CTL) is chemiluminescence emitted in a course of catalytic oxidation. Since 1990, the present authors and coworkers have observed CTL during the catalytic oxidation of various organic vapors in air. This phenomenon has been applied to the CTL-based sensors for detecting combustible vapors. THE CTL response is fast, reproductible and proportional to the concentration of the combustible vapors of ppm orders in air. Based on two types of models of the CTL, the relationship between the CTL intensity and the rate of catalytic oxidation have been investigated analytically. In this article, the effects of catalyst temperature, gas flow-rate and gas concentration on the CTL intensity are demonstrated. Finally, various types of sensing system using the CTL-based sensor are proposed. The results of discrimination and determination of more than ten types of vapors of various concentrations are shown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Firth JG (1966) Trans Faraday Soc 62:2566

    Article  CAS  Google Scholar 

  2. Regener VH (1960) J Geophys Res 65:3975

    Google Scholar 

  3. Regener VH (1964) J Geophys Res 69:3795

    CAS  Google Scholar 

  4. Hodgeson JA, Krost KJ, O’Keeffe AE, Stevens RK (1970) Anal Chem 42:1795

    Article  CAS  Google Scholar 

  5. Bersis D, Vassiliou E (1966) Analyst 91:499

    Article  CAS  Google Scholar 

  6. Breysse M, Claudel B, Faure L, Guenin M, Williams RJJ, Wolkenstein T (1976) J Catalysis 45:137

    Article  CAS  Google Scholar 

  7. Aras VM, Breysse M, Claudel B, Faure L, Guenin M (1977) J Chem Soc Faraday Trans I 73:1039

    Article  CAS  Google Scholar 

  8. Nakagawa M, Fujiwara N, Matsuura Y, Tomiyama T, Yamamoto I, Utsunomiya K, Wada T, Yamashita N, Yamashita Y (1990) Bunseki Kagaku 39:797

    CAS  Google Scholar 

  9. Nakagawa M, Matsuura Y, Tomiyama T, Yamamoto I, Utsunomiya K, Wada T, Yamashita N, Yamashita Y (1990) Rep Res Lab Surf Sci, Okayama Univ 6:125

    Google Scholar 

  10. Utsunomiya K, Nakagawa M, Chikamori S, Kohata M, Tomiyama T, Yamamoto I, Wada T, Yamashita N, Yamashita Y (1993) Proc Adv Fluor Sens Technol 1885:93

    CAS  Google Scholar 

  11. Utsunomiya K, Nakagawa M, Tomiyama T, Yamamoto I, Matsuura Y, Chikamori S, Wada T, Yamashita N, Yamashita Y (1993) Sens Actuator B 11:441

    Google Scholar 

  12. Utsunomiya K, Nakagawa M, Tomiyama T, Yamamoto I, Matsuura Y, Chikamori S, Wada T, Yamashita N, Yamashita Y (1993) Sens Actuator B13:627

    Google Scholar 

  13. Utsunomiya K, Nakagawa M, Sanari N, Kohata M, Tomiyama T, Yamamoto I, Wada T, Yamashita N, Yamashita Y (1995) Sens Actuator B24:790

    Google Scholar 

  14. Nakagawa M (1995) Sens Actuator B 29:94

    Google Scholar 

  15. Nakagawa M, Kawabata S, Nishiyama K, Utsunomiya K, Yamamoto I, Wada T, Yamashita Y, Yamashita N (1996) Sens Actuator B 34:334

    Google Scholar 

  16. Nakagawa M, Yamamoto I, Yamashita N (1998) Anal Sci 14:209

    CAS  Google Scholar 

  17. Nakagawa M, Okabayashi T, Fujimoto T, Utsunomiya K, Yamamoto I, Wada T, Yamashita Y, Yamashita N (1998) Sens Actuator B 51:159

    Google Scholar 

  18. Okabayashi T, Fujimoto T, Yamamoto I, Utsunomiya K, Wada T, Yamashita Y, Yamashita N, Nakagawa M (2000) Sens Actuator B64:54

    CAS  Google Scholar 

  19. Okabayashi T, Toda T, Yamamoto I, Utsunomiya K, Yamashita N, Nakagawa M (2001) Sens Actuator B 74:152

    Google Scholar 

  20. Okabayashi (2002) PhD thesis, Okayama University of Science

    Google Scholar 

  21. Zhu Y, Shi J, Zhang Z, Zhang C, Zhang X (2002) Anal Chem 74:120

    CAS  Google Scholar 

  22. Zhang Z, Zhang C, Zhang X (2002) Analyst 127:792

    CAS  Google Scholar 

  23. Shi J, Li J, Zhu Y, Wei F, Zhang X (2002) Anal Chim Acta 466:69

    Article  CAS  Google Scholar 

  24. Claudel B, Breysse M, Faure L, Guenin M (1978) Rev Chem Intermed 2:75

    CAS  Google Scholar 

  25. Wolkenstein T (1960) The electron theory of catalysis on semiconductors. In: Eley DD (ed) Advances in catalysis. Academic, New York, p 189

    Google Scholar 

  26. Toby S (1973) J Lumin 8:94

    CAS  Google Scholar 

  27. Heusden SV, Hoogeveen LPJ (1976) Z Anal Chem 282:307

    Article  Google Scholar 

  28. Okabayashi T, Matsuo N, Yamamoto I, Utsonomiya K, Yamashita N, Nakagawa M (2005) Sens Actuator B 108:515

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakagawa, M., Yamashita, N. (2005). Cataluminescence-Based Gas Sensors. In: Orellana, G., Moreno-Bondi, M.C. (eds) Frontiers in Chemical Sensors. Springer Series on Chemical Sensors and Biosensors, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27757-9_3

Download citation

Publish with us

Policies and ethics