Skip to main content

NK Cells in Autoimmune Disease

  • Chapter

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 298))

Abstract

The role of NK cells in autoimmunity has not been extensively studied. Speaking for a disease-promoting role for NK cells in autoimmune diseases are recent results suggesting that IFN-γ production by NK cells may help adaptive immune responses diverge in the direction of a Th1 response. NK cells may also be involved in direct killing of tissue cells, which could lead to acceleration of autoimmunity. However, NK cells have also been shown to protect from some autoimmune diseases. A possible reason for this discrepancy may lie in the capacity of NK cells also to produce Th2 cytokines, which could downregulate the Th1 responses that are common in autoimmune disorders. Thus there is at present no coherent view on the role of NK cells in autoimmunity, and more work is needed to clarify why NK cells in some cases aggravate disease and in some cases protect from disease.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albertsson PA, Basse PH, Hokland M, Goldfarb RH, Nagelkerke JF, Nannmark U, Kuppen PJ. (2003) NK cells and the tumour microenvironment: implications for NK-cell function and anti-tumour activity. Trends Immunol 24: 603–609

    Article  CAS  PubMed  Google Scholar 

  • Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, von Boehmer H, Bronson R, Dierich A, Benoist C, Mathis D. (2002) Projection of animmunological self shadow within the thymus by the aire protein. Science 298:1395–1401

    Article  CAS  PubMed  Google Scholar 

  • Basse PH, Hokland P, Gundersen HJ, Hokland M. (1992) Enumeration of organ-associated natural killer cells in mice: application of a new stereological method. Apmis 100:202–208

    Article  CAS  PubMed  Google Scholar 

  • Baxter AG, Smyth MJ. (2002) The role of NK cells in autoimmune disease. Autoimmunity 35:1–14

    Article  CAS  PubMed  Google Scholar 

  • Bazan JF, Bacon KB, Hardiman G, Wang W, Soo K, Rossi D, Greaves DR, Zlotnik A, Schall TJ. (1997) A new class of membrane-bound chemokine with a CX3C motif. Nature 385:640–644

    Article  CAS  PubMed  Google Scholar 

  • Bilbao JR, Martin-Pagola A, Vitoria JC, Zubillaga P, Ortiz L, Castano L. (2002) HLADRB1 andMHC class 1 chain-related A haplotypes in Basque families with celiac disease. Tissue Antigens 60:71–76

    Article  CAS  PubMed  Google Scholar 

  • Bix M, Liao NS, Zijlstra M, Loring J, Jaenisch R, Raulet D. (1991) Rejection of class I MHC-deficient haemopoietic cells by irradiated MHC-matched mice. Nature 349:329–331

    Article  CAS  PubMed  Google Scholar 

  • Cameron AL, Kirby B, Fei W, Griffiths CE. (2002) Natural killer and natural killer-T cells in psoriasis. Arch Dermatol Res 294:363–369

    CAS  PubMed  Google Scholar 

  • Cameron AL, Kirby B, Griffiths CE. (2003) Circulating natural killer cells in psoriasis. Br J Dermatol 149:160–164

    Article  CAS  PubMed  Google Scholar 

  • Campbell JJ, Qin S, Unutmaz D, Soler D, Murphy KE, Hodge MR, Wu L, Butcher EC. (2001) Unique subpopulations of CD56+ NK and NK-T peripheral blood lymphocytes identified by chemokine receptor expression repertoire. J Immunol 166:6477–6482

    CAS  PubMed  Google Scholar 

  • Cardozo AK, Proost P, Gysemans C, Chen MC, Mathieu C, Eizirik DL. (2003) IL-1β and IFN-γ induce the expression of diverse chemokines and IL-15 in human and rat pancreatic islet cells, and in islets from pre-diabetic NOD mice. Diabetologia 46:255–266

    CAS  PubMed  Google Scholar 

  • Colonna M. (2003) TREMs in the immune system and beyond. Nat Rev Immunol 3:445–453

    Article  CAS  PubMed  Google Scholar 

  • Dalbeth N, Callan MF. (2002) A subset of natural killer cells is greatly expanded within inflamed joints. Arthritis Rheum 46:1763–1772

    Article  PubMed  Google Scholar 

  • Dieterich W, Ehnis T, Bauer M, Donner P, Volta U, Riecken EO, Schuppan D. (1997) Identification of tissue transglutaminase as the autoantigen of celiac disease. Nat Med 3:797–801

    Article  CAS  PubMed  Google Scholar 

  • Djeu JY, Jiang K, Wei S. (2002) A view to a kill: signals triggering cytotoxicity. Clin Cancer Res 8: 636–640

    CAS  PubMed  Google Scholar 

  • Dong C, Flavell RA. (2001) Th1 and Th2 cells. Curr Opin Hematol 8:47–51

    Article  CAS  PubMed  Google Scholar 

  • Erkeller-Yusel F, Hulstaart F, Hannet I, Isenberg D, Lydyard P. (1993) Lymphocyte subsets in a large cohort of patients with systemic lupus erythematosus. Lupus 2:227–231

    Article  CAS  PubMed  Google Scholar 

  • Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA. (2003) CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2: a potential new link between adaptive and innate immunity. Blood 101:3052–3057

    Article  CAS  PubMed  Google Scholar 

  • Ferlazzo G, Pack M, Thomas D, Paludan C, Schmid D, Strowig T, Bougras G, Muller WA, Moretta L, Munz C. (2004a) Distinct roles of IL-12 and IL-15 in human natural killer cell activation by dendritic cells from secondary lymphoid organs. Proc Natl Acad Sci USA 101:16606–16611

    Article  CAS  PubMed  Google Scholar 

  • Ferlazzo G, Thomas D, Lin SL, Goodman K, Morandi B, Muller WA, Moretta A, Munz C. (2004b) The abundant NK cells in human secondary lymphoid tissues require activation to express killer cell Ig-like receptors and become cytolytic. J Immunol 172:1455–1462

    CAS  PubMed  Google Scholar 

  • Ferlazzo G, Tsang ML, Moretta L, Melioli G, Steinman RM, Munz C. (2002) Human dendritic cells activate resting natural killer (NK) cells and are recognized via the NKp30 receptor by activated NK cells. J Exp Med 195: 343–351

    Article  CAS  PubMed  Google Scholar 

  • Flodström M, Maday A, Balakrishna D, Cleary MM, Yoshimura A, Sarvetnick N. (2002a) Target cell defense prevents the development of diabetes after viral infection. Nat Immunol 3:373–382

    Article  PubMed  CAS  Google Scholar 

  • Flodström M, Shi FD, Sarvetnick N, Ljunggren HG. (2002b) The natural killer cell-friend or foe in autoimmune disease? Scand J Immunol 55:432–441

    Article  PubMed  Google Scholar 

  • Fogler WE, Volker K, McCormick KL, Watanabe M, Ortaldo JR, Wiltrout RH. (1996) NK cell infiltration into lung, liver, and subcutaneous B16 melanoma is mediated by VCAM-1/VLA-4 interaction. J Immunol 156:4707–4714

    CAS  PubMed  Google Scholar 

  • Gambelunghe G, Falorni A, Ghaderi M, Laureti S, Tortoioli C, Santeusanio F, Brunetti P, Sanjeevi CB. (1999) Microsatellite polymorphism of the MHC class I chainrelated (MIC-A and MIC-B) genes marks the risk for autoimmune Addison’s disease. J Clin Endocrinol Metab 84:3701–3707

    Article  CAS  PubMed  Google Scholar 

  • Gambelunghe G, Gerli R, Bocci EB, Del Sindaco P, Ghaderi M, Sanjeevi CB, Bistoni O, Bini V, Falorni A. (2005) Contribution of MHC class I chain-related A (MICA) gene polymorphism to genetic susceptibility for systemic lupus erythematosus. Rheumatology (Oxford) 44:287–292

    Article  CAS  Google Scholar 

  • Gambelunghe G, Ghaderi M, Cosentino A, Falorni A, Brunetti P, Sanjeevi CB. (2000) Association of MHC Class I chain-related A (MIC-A) gene polymorphism with Type I diabetes. Diabetologia 43:507–514

    Article  CAS  PubMed  Google Scholar 

  • Gerosa F, Baldani-Guerra B, Nisii C, Marchesini V, Carra G, Trinchieri G. (2002) Reciprocal activating interaction between natural killer cells and dendritic cells. J Exp Med 195:327–333

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez A, Katz JD, Mattei MG, Kikutani H, Benoist C, Mathis D. (1997) Genetic control of diabetes progression. Immunity 7:873–883

    Article  CAS  PubMed  Google Scholar 

  • Gray JD, Hirokawa M, Horwitz DA. (1994) The role of transforming growth factor β in the generation of suppression: an interaction between CD8+ T and NK cells. J Exp Med 180:1937–1942

    Article  CAS  PubMed  Google Scholar 

  • Groh V, Bruhl A, El-Gabalawy H, Nelson JL, Spies T. (2003) Stimulation of T cell autoreactivity by anomalous expression of NKG2D and its MIC ligands in rheumatoid arthritis. Proc Natl Acad Sci USA 100:9452–9457

    Article  CAS  PubMed  Google Scholar 

  • Grunebaum E, Malatzky-Goshen E, Shoenfeld Y. (1989) Natural killer cells and autoimmunity. Immunol Res 8: 292–304

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa Y, Screpanti V, Yagita H, Grandien A, Ljunggren HG, Smyth MJ, Chambers BJ. (2004) NK cell TRAIL eliminates immature dendritic cells in vivo and limits dendritic cell vaccination efficacy. J Immunol 172: 123–129

    CAS  PubMed  Google Scholar 

  • Hoglund P, Ljunggren HG, Ohlen C, Ahrlund-Richter L, Scangos G, Bieberich C, Jay G, Klein G, Karre K. (1988) Natural resistance against lymphoma grafts conveyed by H-2Dd transgene to C57BL mice. J Exp Med 168: 1469–1474

    Article  CAS  PubMed  Google Scholar 

  • Hori S, Takahashi T, Sakaguchi S. (2003) Control of autoimmunity by naturally arising regulatory CD4+ T cells. Adv Immunol 81:331–371

    Article  CAS  PubMed  Google Scholar 

  • Horwitz DA, Gray JD, Ohtsuka K. (1999) Role of NK cells and TGF-β in the regulation of T-cell-dependent antibody production in health and autoimmune disease. Microbes Infect 1:1305–1311

    Article  CAS  PubMed  Google Scholar 

  • Hue S, Mention JJ, Monteiro RC, Zhang S, Cellier C, Schmitz J, Verkarre V, Fodil N, Bahram S, Cerf-Bensussan N, Caillat-Zucman S. (2004) A direct role for NKG2D/MICA interaction in villous atrophy during celiac disease. Immunity 21:367–377

    Article  PubMed  Google Scholar 

  • Johansson SE, Hall H, Bjorklund J, Hoglund P. (2004) Broadly impaired NK cell function in non-obese diabetic mice is partially restored by NK cell activation in vivo and by IL-12/IL-18 in vitro. Int Immunol 16:1–11

    Article  CAS  PubMed  Google Scholar 

  • Karre K, Ljunggren HG, Piontek G, Kiessling R. (1986) Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature 319:675–678

    Article  CAS  PubMed  Google Scholar 

  • Kelly JM, Takeda K, Darcy PK, Yagita H, Smyth MJ. (2002) A role for IFN-gamma in primary and secondary immunity generated by NK cell-sensitive tumor-expressing CD80 in vivo. J Immunol 168:4472–4479

    CAS  PubMed  Google Scholar 

  • Lee IF, Qin H, Trudeau J, Dutz J, Tan R. (2004) Regulation of autoimmune diabetes by complete Freund’s adjuvant is mediated by NK cells. J Immunol 172:937–942

    CAS  PubMed  Google Scholar 

  • Loza MJ, Zamai L, Azzoni L, Rosati E, Perussia B. (2002) Expression of type 1 (interferon γ) and type 2 (interleukin-13, interleukin-5) cytokines at distinct stages of natural killer cell differentiation from progenitor cells. Blood 99:1273–1281

    Article  CAS  PubMed  Google Scholar 

  • Luszczek W, Manczak M, Cislo M, Nockowski P, Wisniewski A, Jasek M, Kusnierczyk P. (2004) Gene for the activating natural killer cell receptor, KIR2DS1, is associated with susceptibility to psoriasis vulgaris. Hum Immunol 65:758–766

    Article  CAS  PubMed  Google Scholar 

  • Mars LT, Novak J, Liblau RS, Lehuen A. (2004) Therapeutic manipulation of iNKT cells in autoimmunity: modes of action and potential risks. Trends Immunol 25:471–476

    Article  CAS  PubMed  Google Scholar 

  • Martin MP, Nelson G, Lee JH, Pellett F, Gao X, Wade J, Wilson MJ, Trowsdale J, Gladman D, Carrington M. (2002) Cutting edge: susceptibility to psoriatic arthritis: influence of activating killer Ig-like receptor genes in the absence of specific HLA-C alleles. J Immunol 169:2818–2822

    CAS  PubMed  Google Scholar 

  • Martin-Fontecha A, Thomsen LL, Brett S, Gerard C, Lipp M, Lanzavecchia A, Sallusto F. (2004) Induced recruitment of NK cells to lymph nodes provides IFN-γgamma for TH1 priming. Nat Immunol 5:1260–1265

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto Y, Kohyama K, Aikawa Y, Shin T, Kawazoe Y, Suzuki Y, Tanuma N. (1998) Role of natural killer cells and TCR γδ T cells in acute autoimmune encephalomyelitis. Eur J Immunol 28:1681–1688

    Article  CAS  PubMed  Google Scholar 

  • Meresse B, Chen Z, Ciszewski C, Tretiakova M, Bhagat G, Krausz TN, Raulet DH, Lanier LL, Groh V, Spies T, Ebert EC, Green PH, Jabri B. (2004) Coordinated induction by IL15 of a TCR-independent NKG2D signaling pathway converts CTL into lymphokine-activated killer cells in celiac disease. Immunity 21:357–366

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki A, Hanafusa T, Yamada K, Miyagawa J, Fujino-Kurihara H, Nakajima H, Nonaka K, Tarui S. (1985) Predominance of T lymphocytes in pancreatic islets and spleen of pre-diabetic non-obese diabetic (NOD) mice: a longitudinal study. Clin Exp Immunol 60:622–630

    CAS  PubMed  Google Scholar 

  • Moffett A, Regan L, Braude P. (2004) Natural killer cells, miscarriage, and infertility. BMJ 329: 1283–1285

    Article  PubMed  Google Scholar 

  • Momot T, Koch S, Hunzelmann N, Krieg T, Ulbricht K, Schmidt RE, Witte T. (2004) Association of killer cell immunoglobulin-like receptors with scleroderma. Arthritis Rheum 50:1561–1565

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Bottino C, Pende D, Mingari MC, Biassoni R, Moretta A. (2002) Human natural killer cells: their origin, receptors and function. Eur J Immunol 32:1205–1211

    Article  CAS  PubMed  Google Scholar 

  • Natuk RJ, Welsh RM. (1987) Accumulation and chemotaxis of natural killer/large granular lymphocytes at sites of virus replication. J Immunol 138:877–883

    CAS  PubMed  Google Scholar 

  • Nelson GW, Martin MP, Gladman D, Wade J, Trowsdale J, Carrington M. (2004) Cutting edge: heterozygote advantage in autoimmune disease: hierarchy of protection/susceptibility conferred by HLA and killer Ig-like receptor combinations in psoriatic arthritis. J Immunol 173:4273–4276

    CAS  PubMed  Google Scholar 

  • Ogasawara K, Hamerman JA, Ehrlich LR, Bour-Jordan H, Santamaria P, Bluestone JA, Lanier LL. (2004) NKG2D blockade prevents autoimmune diabetes in NOD mice. Immunity 20:757–767

    Article  CAS  PubMed  Google Scholar 

  • Peritt D, Robertson S, Gri G, Showe L, Aste-Amezaga M, Trinchieri G. (1998) Differentiation of human NK cells into NK1 and NK2 subsets. J Immunol 161:5821–5824

    CAS  PubMed  Google Scholar 

  • Piccioli D, Sbrana S, Melandri E, Valiante NM. (2002) Contact-dependent stimulation and inhibition of dendritic cells by natural killer cells. J Exp Med 195:335–341

    Article  CAS  PubMed  Google Scholar 

  • Poirot L, Benoist C, Mathis D. (2004) Natural killer cells distinguish innocuous and destructive forms of pancreatic islet autoimmunity. Proc Natl Acad Sci USA 101:8102–8107

    Article  CAS  PubMed  Google Scholar 

  • Poulton LD, Smyth MJ, Hawke CG, Silveira P, Shepherd D, Naidenko OV, Godfrey DI, Baxter AG. (2001) Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int Immunol 13:887–896

    Article  CAS  PubMed  Google Scholar 

  • Ramsey C, Winqvist O, Puhakka L, Halonen M, Moro A, Kampe O, Eskelin P, Pelto-Huikko M, Peltonen L. (2002) Aire deficient mice develop multiple features of APECED phenotype and showaltered immune response. HumMol Genet 11:397–409

    CAS  Google Scholar 

  • Raulet DH. (2004) Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5:996–1002

    Article  CAS  PubMed  Google Scholar 

  • Rifa’i M, Kawamoto Y, Nakashima I, Suzuki H. (2004) Essential roles of CD8+CD122+regulatory T cells in the maintenance of T cell homeostasis. J Exp Med 200:1123–1134

    Article  CAS  PubMed  Google Scholar 

  • Rolstad B, Herberman RB, Reynolds CW. (1986) Natural killer cell activity in the rat. V. The circulation patterns and tissue localization of peripheral blood large granular lymphocytes (LGL). J Immunol 136:2800–2808

    CAS  PubMed  Google Scholar 

  • Romphruk AV, Romphruk A, Choonhakarn C, Puapairoj C, Inoko H, Leelayuwat C. (2004) Major histocompatibility complex class I chain-related gene A in Thai psoriasis patients: MICA association as a part of human leukocyte antigen-B-Cw haplotypes. Tissue Antigens 63:547–554

    Article  CAS  PubMed  Google Scholar 

  • Rot A, von Andrian UH. (2004) Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells. Annu Rev Immunol 22:891–928

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Mather TP, Lewis CA, Biron CA. (2002) Type I interferons regulate inflammatory cell trafficking and macrophage inflammatory protein 1a delivery to the liver. J Clin Invest 110:321–330

    Article  CAS  PubMed  Google Scholar 

  • Salazar-Mather TP, Orange JS, Biron CA. (1998) Early murine cytomegalovirus (MCMV) infection induces liver natural killer (NK) cell inflammation and protection through macrophage inflammatory protein 1a (MIP-1a)-dependent pathways. J Exp Med 187:1–14

    Article  CAS  PubMed  Google Scholar 

  • Scribner CL, Steinberg AD. (1988) The role of splenic colony-forming units in autoimmune disease. Clin Immunol Immunopathol 49:133–142

    Article  CAS  PubMed  Google Scholar 

  • Shi FD, Wang HB, Li H, Hong S, Taniguchi M, Link H, Van Kaer L, Ljunggren HG. (2000) Natural killer cells determine the outcome of B cell-mediated autoimmunity. Nat Immunol 1:245–251

    Article  CAS  PubMed  Google Scholar 

  • Smeltz RB, Wolf NA, Swanborg RH. (1999) Inhibition of autoimmune T cell responses in the DA rat by bone marrow-derived NK cells in vitro: implications for autoimmunity. J Immunol 163:1390–1397

    CAS  PubMed  Google Scholar 

  • Smyth MJ, Hayakawa Y, Takeda K, Yagita H. (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861

    Article  CAS  PubMed  Google Scholar 

  • Snyder MR, Weyand CM, Goronzy JJ. (2004) The double life of NK receptors: stimulation or co-stimulation? Trends Immunol 25:25–32

    Article  CAS  PubMed  Google Scholar 

  • Stein-Streilein J, Bennett M, Mann D, Kumar V. (1983) Natural killer cells in mouse lung: surface phenotype, target preference, and response to local influenza virus infection. J Immunol 131:2699–2704

    CAS  PubMed  Google Scholar 

  • Suzuki Y, Hamamoto Y, Ogasawara Y, Ishikawa K, Yoshikawa Y, Sasazuki T, Muto M. (2004) Genetic polymorphisms of killer cell immunoglobulin-like receptors are associated with susceptibility to psoriasis vulgaris. J Invest Dermatol 122:1133–1136

    Article  CAS  PubMed  Google Scholar 

  • Tagliabue A, Befus AD, Clark DA, Bienenstock J. (1982) Characteristics of natural killer cells in the murine intestinal epithelium and lamina propria. J Exp Med 155:1785–1796

    Article  CAS  PubMed  Google Scholar 

  • Tak PP, Kummer JA, Hack CE, Daha MR, Smeets TJ, Erkelens GW, Meinders AE, Kluin PM, Breedveld FC. (1994) Granzyme-positive cytotoxic cells are specifically increased in early rheumatoid synovial tissue. Arthritis Rheum 37:1735–1743

    Article  CAS  PubMed  Google Scholar 

  • Takahashi K, Aranami T, Endoh M, Miyake S, Yamamura T. (2004) The regulatory role of natural killer cells in multiple sclerosis. Brain 127:1917–1927

    Article  PubMed  Google Scholar 

  • Takahashi K, Miyake S, Kondo T, Terao K, Hatakenaka M, Hashimoto S, Yamamura T. (2001) Natural killer type 2 bias in remission of multiple sclerosis. J Clin Invest 107:R23–R29

    Article  CAS  PubMed  Google Scholar 

  • Takeda K, Dennert G. (1993) The development of autoimmunity in C57BL/6 lpr mice correlates with the disappearance of natural killer type 1-positive cells: evidence for their suppressive action on bone marrow stem cell proliferation, B cell immunoglobulin secretion, and autoimmune symptoms. J Exp Med 177:155–164

    Article  CAS  PubMed  Google Scholar 

  • Todd DJ, Forsberg EM, Greiner DL, Mordes JP, Rossini AA, Bortell R. (2004) Deficiencies in gut NK cell number and function precede diabetes onset in BB rats. J Immunol 172:5356–5362

    CAS  PubMed  Google Scholar 

  • Toyabe SI, Kaneko U, Uchiyama M. (2004) Decreased DAP12 expression in natural killer lymphocytes from patients with systemic lupus erythematosus is associated with increased transcript mutations. J Autoimmun 23:371–378

    Article  CAS  PubMed  Google Scholar 

  • Traugott U. (1985) Characterization and distribution of lymphocyte subpopulations in multiple sclerosis plaques versus autoimmune demyelinating lesions. Springer Semin Immunopathol 8:71–95

    Article  CAS  PubMed  Google Scholar 

  • Trembleau S, Germann T, Gately MK, Adorini L. (1995) The role of IL-12 in the induction of organ-specific autoimmune diseases. Immunol Today 16:383–386

    Article  CAS  PubMed  Google Scholar 

  • van der Slik AR, Koeleman BP, Verduijn W, Bruining GJ, Roep BO, Giphart MJ. (2003) KIR in type 1 diabetes: disparate distribution of activating and inhibitory natural killer cell receptors in patients versus HLA-matched control subjects. Diabetes 52:2639–2642

    Article  PubMed  Google Scholar 

  • Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. (1992) Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature 356:314–317

    Article  CAS  PubMed  Google Scholar 

  • Wiltrout RH, Mathieson BJ, Talmadge JE, Reynolds CW, Zhang SR, Herberman RB, Ortaldo JR. (1984) Augmentation of organ-associated natural killer activity by biological response modifiers. Isolation and characterization of large granular lymphocytes from the liver. J Exp Med 160:1431–1449

    Article  CAS  PubMed  Google Scholar 

  • Wu J, Edberg JC, Redecha PB, Bansal V, Guyre PM, Coleman K, Salmon JE, Kimberly RP. (1997) A novel polymorphism of FcγIIIa (CD16) alters receptor function and predisposes to autoimmune disease. J Clin Invest 100: 1059–1070

    Article  CAS  PubMed  Google Scholar 

  • Yabuhara A, Yang FC, Nakazawa T, Iwasaki Y, Mori T, Koike K, Kawai H, Komiyama A. (1996) A killing defect of natural killer cells as an underlying immunologic abnormality in childhood systemic lupus erythematosus. J Rheumatol 23:171–177

    CAS  PubMed  Google Scholar 

  • Yen JH, Moore BE, Nakajima T, Scholl D, Schaid DJ, Weyand CM, Goronzy JJ. (2001) Major histocompatibility complex class I-recognizing receptors are disease risk genes in rheumatoid arthritis. J Exp Med 193: 1159–1167

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama WM, Kim S, French AR. (2004) The dynamic life of natural killer cells. Annu Rev Immunol 22: 405–429

    Article  CAS  PubMed  Google Scholar 

  • Yoneda O, Imai T, Goda S, Inoue H, Yamauchi A, Okazaki T, Imai H, Yoshie O, Bloom ET, Domae N, Umehara H. (2000) Fractalkine-mediated endothelial cell injury by NK cells. J Immunol 164:4055–4062

    CAS  PubMed  Google Scholar 

  • Zhang B, Yamamura T, Kondo T, Fujiwara M, Tabira T. (1997) Regulation of experimental autoimmune encephalomyelitis by natural killer (NK) cells. J Exp Med 186:1677–1687

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Höglund .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Johansson, S., Hall, H., Berg, L., Höglund, P. (2006). NK Cells in Autoimmune Disease. In: Compans, R., et al. Immunobiology of Natural Killer Cell Receptors. Current Topics in Microbiology and Immunology, vol 298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27743-9_13

Download citation

Publish with us

Policies and ethics