Skip to main content

Part of the book series: Springer Series in Computational Mathematics ((SSCM,volume 37))

  • 1238 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

1.10 Comments and bibliographic remarks

Section 1.1

  1. L. Boltzmann. Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen. Sitzungsber. Akad. Wiss. Wien, 66:275–370, 1872.

    Google Scholar 

  2. C. Cercignani. Ludwig Boltzmann. The Man who Trusted Atoms. Oxford University Press, Oxford, 1998.

    Google Scholar 

Section 1.2

  1. K. Huang. Statistical mechanics. John Wiley & Sons Inc., New York, second edition, 1987.

    Google Scholar 

Section 1.3

  1. G. A. Bird. Monte-Carlo simulation in an engineering context. In S. Fisher, editor, Proc. of the 12th International Symposium on Rarefied Gas Dynamics (Charlottesville, 1980), volume 74 of Progress in Astronautics and Aeronautics, pages 239–255. AIAA, New York, 1981.

    Google Scholar 

  2. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994.

    Google Scholar 

  3. C. Cercignani. The Boltzmann Equation and its Applications. Springer, New York, 1988. Sect. 2.4, 2.5

    Google Scholar 

  4. C. Cercignani. The Boltzmann Equation and its Applications. Springer, New York, 1988. p.71

    Google Scholar 

  5. M. H. Ernst. Exact solutions of the nonlinear Boltzmann and related kinetic equations. In Nonequilibrium phenomena. I. The Boltzmann equation, pages 51–119. North-Holland, 1983.

    Google Scholar 

  6. H. A. Hassan and D. B. Hash. A generalized hard-sphere model for Monte Carlo simulations. Phys. Fluids A, 5: 738–744, 1993.

    Article  Google Scholar 

  7. K. Koura and H. Matsumoto. Variable soft sphere molecular model for inversepower-law or Lennard-Jones potential. Phys. Fluids A, 3: 2459–2465, 1991.

    Article  Google Scholar 

  8. K. Koura and H. Matsumoto. Variable soft sphere molecular model for air species. Phys. Fluids A, 4: 1083–1085, 1992.

    Article  Google Scholar 

Section 1.4

  1. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994. Sect. 4.5

    Google Scholar 

  2. C. Cercignani. The Boltzmann Equation and its Applications. Springer, New York, 1988. p.118, Ref. 11

    Google Scholar 

  3. C. Cercignani. The Boltzmann Equation and its Applications. Springer, New York, 1988. Ch. III

    Google Scholar 

  4. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994. Ch. 8

    Google Scholar 

Section 1.5

  1. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994. p.91

    Google Scholar 

  2. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994. pp.25, 64, 82 165

    Google Scholar 

  3. G. Brasseur and S. Solomon. Aeronomy of the Middle Atmosphere. D. Reidel Publishing Company, Dordrecht, 1984.

    Google Scholar 

  4. C. Cercignani. The Boltzmann Equation and its Applications. Springer, New York, 1988. p.19

    Google Scholar 

  5. C. Cercignani. The Boltzmann Equation and its Applications. Springer, New York, 1988. p.233

    Google Scholar 

  6. M. J. McEwan and L. F. Phillips. The Chemistry of the Atmosphere. Edward Arnold (Publishers) Ltd., London, 1975.

    Google Scholar 

Section 1.6

  1. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994. p.36

    Google Scholar 

  2. C. Cercignani, R. Illner, and M. Pulvirenti. The Mathematical Theory of Dilute Gases. Springer, New York, 1994. p.51

    Google Scholar 

  3. R. Kirsch. Die Boltzmann-Gleichung für energieabhängige Verteilungsfunktionen. Diplomarbeit, Universität des Saarlandes, 1999.

    Google Scholar 

Section 1.7

  1. G. A. Bird. Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press, Oxford, 1994. p.186

    Google Scholar 

  2. C. Cercignani. The Boltzmann Equation and its Applications. Springer, New York, 1988. p.85

    Google Scholar 

Section 1.8

  1. J.-F. Bourgat, P. Le Tallec, B. Perthame, and Y. Qiu. Coupling Boltzmann and Euler equations without overlapping. In Domain decomposition methods in science and engineering (Como, 1992), pages 377–398. Amer. Math. Soc., Providence, RI, 1994.

    Google Scholar 

  2. I. Boyd, G. Chen, and G. Candler. Predicting Failure of the Continuum Fluid Equations. AIAA, 94:2352, 1994.

    Google Scholar 

  3. M. Günther, P. Le Tallec, J. P. Perlat, and J. Struckmeier. Numerical modeling of gas flows in the transition between rarefied and continuum regimes. In Numerical flow simulation, I (Marseille, 1997), pages 222–241. Vieweg, Braunschweig, 1998.

    Google Scholar 

  4. A. Klar. Convergence of alternating domain decomposition schemes for kinetic and aerodynamic equations. Math. Methods Appl. Sci., 18(8):649–670, 1995.

    Article  Google Scholar 

  5. A. Klar. Domain decomposition for kinetic problems with nonequilibrium states. European J. Mech. B Fluids, 15(2):203–216, 1996.

    Google Scholar 

  6. A. Klar. Asymptotic analysis and coupling conditions for kinetic and hydrodynamic equations. Comput. Math. Appl., 35(1–2):127–137, 1998.

    Article  Google Scholar 

  7. P. Le Tallec and F. Mallinger. Coupling Boltzmann and Navier-Stokes equations by half fluxes. J. Comput. Phys., 136(1):51–67, 1997.

    Article  Google Scholar 

  8. H. W. Liepmann, R. Narasimha, and M. T. Chahine. Structure of a plane shock layer. Phys. Fluids, 5:1313, 1962.

    Article  Google Scholar 

  9. J. Meixner. Zur Thermodynamik irreversibler Prozesse. Z. Phys. Chem., 53B:253, 1941.

    Google Scholar 

  10. P. Quell. Nonlinear stability of entropy flux splitting schemes on bounded domains. IMA J. Numer. Anal., 20(3):441–459, 2000.

    Article  Google Scholar 

  11. S. Tiwari. Coupling of the Boltzmann and Euler equations with automatic domain decomposition. J. Comput. Phys., 144(2):710–726, 1998.

    Article  Google Scholar 

  12. S. Tiwari and A. Klar. An adaptive domain decomposition procedure for Boltzmann and Euler equations. J. Comput. Appl. Math., 90(2):223–237, 1998.

    Article  Google Scholar 

  13. S. Tiwari and S. Rjasanow. Sobolev norm as a criterion of local thermal equilibrium. European J. Mech. B Fluids, 16(6):863–876, 1997.

    Google Scholar 

Section 1.9

  1. M. Knudsen. Kinetic Theory of Gases. Methuen, London, 1952.

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Kinetic theory. In: Stochastic Numerics for the Boltzmann Equation. Springer Series in Computational Mathematics, vol 37. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27689-0_1

Download citation

Publish with us

Policies and ethics