Skip to main content

Cell Adhesion and Communication: A Lesson from Echinoderm Embryos for the Exploitation of New Therapeutic Tools

  • Chapter
Echinodermata

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 39))

Abstract

In this chapter, we summarise fundamental findings concerning echinoderms as well as research interests on this phylum for biomedical and evolutionary studies. We discuss how current knowledge of echinoderm biology, in particular of the sea urchin system, can shed light on the understanding of important biological phenomena and in dissecting them at the molecular level. The general principles of sea urchin embryo development are summarised, mainly focusing on cell communication and interactions, with particular attention to the cell-extracellular matrix and cell-cell adhesion molecules and related proteins. Our purpose is not to review all the work done over the years in the field of cellular interaction in echinoderms. On the contrary, we will rather focus on a few arguments in an effort to re-examine some ideas and concepts, with the aim of promoting discussion in this rapidly growing field and opening new routes for research on innovative therapeutic tools.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson DL, Humphreys T (1988) Sea urchin morphogenesis and cell-hyalin adhesion are perturbed by a monoclonal antibody specific for hyalin. Development 104:391–402

    PubMed  Google Scholar 

  • Adelson DL, Alliegro MC, McClay DR (1992) On the ultrastructure of hyalin, a cell adhesion protein of the sea urchin embryo extracellular matrix. J Cell Biol 116:1283–1289

    Article  PubMed  Google Scholar 

  • Alliegro MC, Ettensohn CA, Burdsal CA, Erickson HP, McClay DR (1988) Echinonectin: a new embryonic substrate adhesion protein. J Cell Biol 107:2319–2327

    PubMed  Google Scholar 

  • Alliegro MC, Burdsal CA, McClay DR (1990) In vitro biological activities of echinonectin. Biochemistry 29:2135–2141

    Article  PubMed  Google Scholar 

  • Amemiya S (1989) Development of the basal lamina and its role in migration and pattern formation of primary mesenchyme cells in sea urchin embryos. Dev Growth Differ 31:131–145

    Article  Google Scholar 

  • Angerer LM, Chambers SA, Yang Q, Venkatesan M, Angerer RC, Simpson RT (1988) Expression of a collagen gene in mesenchyme lineages of the Strongylocentrotus purpuratus embryo. Genes Dev 2:239–246

    PubMed  Google Scholar 

  • Angerer LM, Oleksyn DW, Logan CY, McClay DR, Dale L, Angerer RC (2000) A BMP pathway regulates cell fate allocation along the sea urchin animal-vegetal embryonic axis. Development 127:1105–1114

    PubMed  Google Scholar 

  • Aplin AE, Howe A, Alahari SK, Juliano RL (1998) Signal transduction and signal modulation by cell adhesion receptors: the role of integrins, cadherins, immunoglobulin-cell adhesion molecules, and selectins. Pharmacol Rev 50(2):197–263

    PubMed  Google Scholar 

  • Armstrong N, Hardin J, McClay DR (1993) Cell-cell interactions regulate skeleton formation in the sea urchin embryo. Development 119:833–840

    PubMed  Google Scholar 

  • Bather FA (1900) The Echinodermata. In: Lankester RR (ed) A treatise on zoology, part III, A and C. Black, London

    Google Scholar 

  • Benson S, Smith L, Wilt F, Shaw R (1990) The synthesis and secretion of collagen by cultured sea urchin micromeres. Exp Cell Res 188:141–146

    Article  PubMed  Google Scholar 

  • Benson S, Page L, Ingersoll E, Rosenthal E, Dungca K, Signor D (1999) Developmental characterization of the gene for laminin alpha-chain in sea urchin embryos. Mech Dev 81:37–49

    Article  PubMed  Google Scholar 

  • Berman AE, Kozlova NI, Morozevich GE (2003) Integrins: structure and signaling. Biochemistry (Mosc) 68:1284–1299

    PubMed  Google Scholar 

  • Bisgrove BW, Raff RA (1993) The SpEGF III gene encodes a member of the fibropellins: EGF repeat-containing proteins that form the apical lamina of the sea urchin embryo. Dev Biol 157:526–538

    Article  PubMed  Google Scholar 

  • Bisgrove BW, Andrews ME, Raff RA (1991) Fibropellins, products of an EGF repeat-containing gene, form a unique extracellular matrix structure that surrounds the sea urchin embryo. Dev Biol 146:89–99

    Article  PubMed  Google Scholar 

  • Bokel C, Brown NH (2002) Integrins in development: moving on, responding to, and sticking to the extracellular matrix. Dev Cell 3:311–321

    Article  PubMed  Google Scholar 

  • Brennan C, Robinson JJ (1994) Cloning and characterization of HLC-32, a 32-kDa protein component of the sea urchin extraembryonic matrix, the hyaline layer. Dev Biol 165:556–565

    Article  PubMed  Google Scholar 

  • Brooks JM, Wessel GM (2002) The major yolk protein in sea urchins is a transferrin-like, iron binding protein. Dev Biol 245:1–12

    Article  PubMed  Google Scholar 

  • Burke RD (1999) Invertebrate integrins: structure, function and evolution. Int Rev Cytol 191:257–284

    PubMed  Google Scholar 

  • Burke RD, Myers RL, Sexton TL, Jackson C (1991) Cell movements during the initial phase of gastrulation in the sea urchin embryo. Dev Biol 146:542–557

    Article  PubMed  Google Scholar 

  • Burke RD, Lail M, Nakajima Y (1998) The apical lamina and its role in cell adhesion in sea urchin embryos. Cell Adhes Commun 5:97–108

    PubMed  Google Scholar 

  • Cameron RA, Davidson EH (1991) Cell type specification during sea urchin development. Trends Gen 7:212–218

    Article  Google Scholar 

  • Cameron RA, Fraser SE, Britten RJ, Davidson EH (1991) Macromere cell fates during sea urchin development. Development 113:1085–1091

    PubMed  Google Scholar 

  • Cazzola M, Page CP, Matera MG (2004) Alternative and/or integrative therapies for pneumonia under development. Curr Opin Pulm Med 10:204–210

    Article  PubMed  Google Scholar 

  • Cervello M, Matranga V (1989) Evidence of a precursor-product relationship between vitellogenin and toposome, a glycoprotein complex mediating cell adhesion. Cell Differ Dev 26:67–76

    Article  PubMed  Google Scholar 

  • Chang DC, Afzelius BA (1973) Electron microscopic study of membrane junctions of Arbacia punctulata blastomeres. Biol Bull 145:428

    Google Scholar 

  • Cherr GN, Summers RG, Baldwin JD, Morrill JB (1992) Preservation and visualization of the sea urchin embryo blastocoelic extracellular matrix. Microsc Res Tech 22:11–22

    Article  PubMed  Google Scholar 

  • Chin D, Boyle GM, Parsons PG, Coman WB (2004) What is transforming growth factor-beta (TGF-beta)? Br J Plast Surg 57:215–221

    Article  PubMed  Google Scholar 

  • Citkowicz E (1971) The hyaline layer: its isolation and role in echinoderm development. Dev Biol 24:348–362

    PubMed  Google Scholar 

  • D'Alessio M, Ramirez F, Suzuki HR, Solursh M, Gambino R (1989) Structure and developmental expression of a sea urchin fibrillar collagen gene. Proc Natl Acad Sci USA 86:9303–9307

    PubMed  Google Scholar 

  • D'Alessio M, Ramirez F, Suzuki HR, Solursh M, Gambino R (1990) Cloning of a fibrillar collagen gene expressed in the mesenchymal cells of the developing sea urchin embryo. J Biol Chem 265:7050–7054

    PubMed  Google Scholar 

  • Danen EH, Sonnenberg A (2003) Integrins in regulation of tissue development and function. J Pathol 201:632–641

    Article  PubMed  Google Scholar 

  • Dan-Sohkawa M, Yamanaka H, Watanabe K (1986) Reconstruction of bipinnaria larvae from dissociated embryonic cells of the starfish, Asterina pectinifera. J Embryol Exp Morphol 94:47–60

    PubMed  Google Scholar 

  • Davidson EH, Cameron RA, Ransick A (1998) Specification of cell fate in the sea urchin embryos: summary and some proposed mechanisms. Development 125:3269–3290

    PubMed  Google Scholar 

  • Davidson EH, Rast JP, Oliveri P, Ransick A, Calestani C, Yuh CH, Minokawa T, Amore G, Hinman V, Arenas-Mena C, Otim O, Brown CT, Livi CB, Lee PY, Revilla R, Rust AG, Pan Z, Schilstra MJ, Clarke PJ, Arnone MI, Rowen L, Cameron RA, McClay DR, Hood L, Bolouri H (2002) A genomic regulatory network for development. Science 295:1669–1678

    Article  PubMed  Google Scholar 

  • Delgadillo-Reynoso MG, Rollo DR, Hursh DA, Raff RA (1989) Structural analysis of the uEGF gene in the sea urchin Strongylocentrotus purpuratus reveals more similarity to vertebrate than to invertebrate genes with EGF-like repeats. J Mol Evol 29:314–327

    Article  PubMed  Google Scholar 

  • De Petrocellis B, Vittorelli ML (1975) Role of cell interactions in development and differentiation of the sea urchin Paracentrotus lividus. Changes in the activity of some enzymes of DNA biosynthesis after cell dissociation. Exp Cell Res 94:392–400

    Article  PubMed  Google Scholar 

  • DeSimone DW, Spiegel E, Spiegel M (1985) The biochemical identification of fibronectin in the sea urchin embryo. Biochem Biophys Res Commun 133:183–188

    Article  PubMed  Google Scholar 

  • Driesch H (1892) The potency of the first two cleavage cells in echinoderm development. Experimental production of partial and double formations. In: Willier BH, Oppenheimer JM (eds) Foundations of experimental embryology. Hafner, New York

    Google Scholar 

  • Driesch H (1894) Analytische Theorie de organischen Entwicklung. W Engelmann, Leipzig

    Google Scholar 

  • Dyer ES, Paulsen MT, Markwart SM, Goh M, Livant DL, Ljungman M (2002) Phenylbutyrate inhibits the invasive properties of prostate and breast cancer cell lines in the sea urchin embryo basement membrane invasion assay. Int J Cancer 101:496–499

    Article  PubMed  Google Scholar 

  • Ettensohn CA, Malinda KM (1993) Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo. Development 119:155–167

    PubMed  Google Scholar 

  • Eudy JD, Ma-Edmonds M, Yao SF, Talmadge CB, Kelley PM, Weston MD, Kimberling WJ, Sumegi J (1997) Isolation of a novel human homologue of the gene coding for echinoderm microtubule-associated protein (EMAP) from the Usher syndrome type 1a locus at 14q32. Genomics 43:104–106

    Article  PubMed  Google Scholar 

  • Exposito JY, D'Alessio M, Solursh M, Ramirez F (1992) Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen. J Biol Chem 267:15559–15562

    PubMed  Google Scholar 

  • Fernandez-Serra M, Consales C, Livigni A, Arnone MI (2004) Role of the ERK-mediated signaling pathway in mesenchyme formation and differentiation in the sea urchin embryo. Dev Biol 268:384–402

    Article  PubMed  Google Scholar 

  • Flood J, Mayne J, Robinson JJ (2000) Identification and characterization of gelatin-cleavage activities in the apically located extracellular matrix of the sea urchin embryo. Biochem Cell Biol 78:455–462

    Article  PubMed  Google Scholar 

  • Galileo DS, Morrill JB (1985) Patterns of cells and extracellular material of the sea urchin Lytechinus variegatus (Echinodermata; Echinoidea) embryo, from hatched blastula to late gastrula. J Morphol 185:387–402

    Article  Google Scholar 

  • Ghersi G, Vittorelli ML (1990) Immunological evidence for the presence in sea urchin embryos of a cell adhesion protein similar to mouse uvomorulin (E-cadherin). Cell Differ Dev 31:67–75

    Article  PubMed  Google Scholar 

  • Ghersi G, Salamone M, Dolo V, Levi G, Vittorelli ML (1993) Differential expression and function of cadherin-like proteins in the sea urchin embryo. Mech Dev 41:47–55

    Article  PubMed  Google Scholar 

  • Gilula NB (1973) Septate junction development in sea urchin embryos. J Cell Biol 55:172

    Google Scholar 

  • Giudice G (1962) Reconstitution of whole larvae from disaggregated cells of sea urchin embryos. Dev Biol 5:402–411

    Article  PubMed  Google Scholar 

  • Govindarajan V, Ramachandran RK, George JM, Shakes DC, Tomlinson CR (1995) An ECM-bound, PDGF-like growth factor and a TGF-alpha-like growth factor are required for gastrulation and spiculogenesis in the Lytechinus embryo. Dev Biol 172:541–551

    Article  PubMed  Google Scholar 

  • Gratwohl EK, Kellenberger E, Lorand L, Noll H (1991) Storage, ultrastructural targeting and function of toposomes and hyalin in sea urchin embryogenesis. Mech Dev 33:127–138

    Article  PubMed  Google Scholar 

  • Grimwade JE, Gagnon ML, Yang Q, Angerer RC, Angerer LM (1991) Expression of two mRNAs encoding EGF-related proteins identifies subregions of sea urchin embryonic ectoderm. Dev Biol 143:44–57

    Article  PubMed  Google Scholar 

  • Guss KA, Ettensohn CA (1997) Skeletal morphogenesis in the sea urchin embryo: regulation of primary mesenchyme gene expression and skeletal rod growth by ectoderm-derived cues. Development 124:1899–1908

    PubMed  Google Scholar 

  • Gustafson T, Wolpert L (1961) Studies on the cellular basis of morphogenesis in sea urchin embryos: directed movements of primary mesenchyme cells in normal and vegetalized larvae. Exp Cell Res 24:64–79

    Article  PubMed  Google Scholar 

  • Gustafson T, Wolpert L (1967) Cellular movement and contact in sea urchin morphogenesis. Biol Rev 42:442–498

    PubMed  Google Scholar 

  • Haag ES, Sly BJ, Andrews ME, Raff RA (1999) Apextrin, a novel extracellular protein associated with larval ectoderm evolution in Heliocidaris erythrogramma. Dev Biol 211:77–87

    Article  PubMed  Google Scholar 

  • Hall HG, Vacquier VD (1982) The apical lamina of the sea urchin embryo: major glycoproteins associated with the hyaline layer. Dev Biol 89:168–178

    Article  PubMed  Google Scholar 

  • Hardin J (1996) The cellular basis of sea urchin gastrulation. Curr Topics Dev Biol 33:159–262

    Google Scholar 

  • Hazan RB, Qiao R, Keren R, Badano I, Suyama K (2004) Cadherin switch in tumour progression. Ann N Y Acad Sci 1014:155–163

    Article  PubMed  Google Scholar 

  • Herbst C (1900) Über das auseinandergehen wilhelm in furchungs-und gewebezellen in kalkfreiem medium. Arch Entwicklungsmech Org 9:424–463

    Article  Google Scholar 

  • Hertzler PL, McClay DR (1999) alphaSU2, an epithelial integrin that binds laminin in the sea urchin embryo. Dev Biol 207:1–13

    Article  PubMed  Google Scholar 

  • Hodor PG, Illies MR, Broadley S, Ettensohn CA (2000) Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains. Dev Biol 222:181–194

    Article  PubMed  Google Scholar 

  • Hogan BL, Blessing M, Winnier GE, Suzuki N, Jones CM (1994) Growth factors in development: the role of TGF-beta related polypeptide signalling molecules in embryogenesis. Dev (Suppl):53–60

    Google Scholar 

  • Hoodbhoy T, Carroll EJ Jr, Talbot P (2000) Relationship between p62 and p56, two proteins of the mammalian cortical granule envelope, and hyalin, the major component of the echinoderm hyaline layer, in hamsters. Biol Reprod 62:979–987

    PubMed  Google Scholar 

  • Hörstadius S (1939). The mechanics of sea urchin development, studied by operative methods. Biol Rev 14:132–179

    Google Scholar 

  • Hursh DA, Andrews ME, Raff RA (1987) A sea urchin gene encodes a polypeptide homologous to epidermal growth factor. Science 237:1487–1490

    PubMed  Google Scholar 

  • Hwang SL, Chen CA, Chen C (1999) Sea urchin TgBMP2/4 gene encoding a bone morphogenetic protein closely related to vertebrate BMP2 and BMP4 with maximal expression at the later stages of embryonic development. Biochem Biophys Res Commun 258:457–463

    Article  PubMed  Google Scholar 

  • Hynes RO (1992) Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69:11–25

    Article  PubMed  Google Scholar 

  • Hynes RO, Zhao Q (2000) The evolution of cell adhesion. J Cell Biol 150:F89–F95

    Article  PubMed  Google Scholar 

  • Iwata M, Nakano E (1981) Fibronectin from the ovary of the sea urchin, Pseudocentrotus depressus. Wilhelm Roux Arch Dev Biol 194:377–384

    Article  Google Scholar 

  • Iwata M, Nakano E (1983). Characterization of sea-urchin fibronectin. Biochem J 215:205–208

    PubMed  Google Scholar 

  • Kahn CR, Baird KL, Jarrett DB, Flier JS (1978) Direct demonstration that receptor crosslinking or aggregation is important in insulin action. Proc Natl Acad Sci USA 75:4209–4213

    PubMed  Google Scholar 

  • Kahn TA, Blumer J, Silverman RA, Bickers DR (1988) Screening for the developmental toxicity of retinoids: use of the sea urchin model. Fund Appl Toxicol 11:511–518

    Article  Google Scholar 

  • Kane RE (1970) Direct isolation of the hyaline layer protein released from the cortical granules of the sea urchin egg at fertilization. J Cell Biol 45:615–622

    Article  PubMed  Google Scholar 

  • Kane RE, Stephens RE (1969) A comparative study of the isolation of the cortex and the role of the calcium-insoluble protein in several species of sea urchin egg. J Cell Biol 41:133–144

    Article  PubMed  Google Scholar 

  • Kato KH, Abe T, Nakashima S, Matranga V, Zito F, Yokota Y (2004) 'Nectosome': a novel cytoplasmic vesicle containing nectin in the egg of the sea urchin, Temnopleurus hardwickii. Dev Growth Differ 46:239–447

    Article  PubMed  Google Scholar 

  • Katow H (1995) Pamlin, a primary mesenchyme cell adhesion protein, in the basal lamina of the sea urchin embryo. Exp Cell Res 218:469–278

    Article  PubMed  Google Scholar 

  • Katow H, Sofuku S (2001) An RGDS peptide-binding receptor, FR-1R, localizes to the basal side of the ectoderm and to primary mesenchyme cells in sand dollar embryos. Dev Growth Differ 43:601–610

    Article  PubMed  Google Scholar 

  • Katow H, Solursh M (1979) Ultrastructure of blastocoel material in blastulae and gastrulae of the sea urchin Lytechinus pictus. J Exp Zool 210:561–567

    Article  Google Scholar 

  • Katow H, Yamada KM, Solursh M (1982) Occurrence of fibronectin on the primary mesenchyme cell surface during migration in the sea urchin embryo. Differentiation 22:120–124

    PubMed  Google Scholar 

  • Kawabe R, Armstrong P, Pollock E (1981) An extracellular fibrillar matrix in gastrulating sea urchin embryos. Dev Biol 85:509–515

    Article  PubMed  Google Scholar 

  • Kingsley DM (1994) The TGF-beta superfamily: new members, new receptors, and new genetic tests of function in different organisms. Genes Dev 8:133–146

    PubMed  Google Scholar 

  • Kiyomoto M, Tsukahara J (1991) Spicule formation-inducing substance in sea urchin embryo. Dev Growth Differ 33:443–450

    Article  Google Scholar 

  • Koch AW, Manzur KL, Shan W (2004) Structure-based models of cadherin-mediated cell adhesion: the evolution continues. Cell Mol Life Sci 61:1884–1895

    Article  PubMed  Google Scholar 

  • Koyama T, Noguchi K, Aniya Y, Sakanashi M (1998) Analysis for sites of anticoagulant action of plancinin, a new anticoagulant peptide isolated from the starfish Acanthaster planci, in the blood coagulation cascade. Gen Pharmacol 31:277–282

    Article  PubMed  Google Scholar 

  • Lethias C, Exposito JY, Descollonges Y, Penin F, Garrone R (1995) Expression of a new fibrillar collagen class in the sea urchin embryo during spiculogenesis. Biol Cell 84:98

    Article  Google Scholar 

  • Littlewood DTJ, Smith AB, Clough KA, Emson RH (1997) The interrelationships of the echinoderm classes: morphological and molecular evidence. Biol J Linn Soc 61:409–438

    Article  Google Scholar 

  • Livant DL, Linn S, Markwart S, Shuster J (1995) Invasion of selectively permeable sea urchin embryo basement membranes by metastatic tumor cells, but not by their normal counterparts. Cancer Res 55:5085–5093

    PubMed  Google Scholar 

  • Lundgren B (1973) Surface coating of the sea urchin larva as revealed by ruthenium red. J Submicrosc Cytol 5:61–70

    Google Scholar 

  • Maitra A, Iacobuzio-Donahue C, Rahman A, Sohn TA, Argani P, Meyer R, Yeo CJ, Cameron JL, Goggins M, Kern SE, Ashfaq R, Hruban RH, Wilentz RE (2002) Immunohistochemical validation of a novel epithelial and a novel stromal marker of pancreatic ductal adenocarcinoma identified by global expression microarrays: sea urchin fascin homolog and heat shock protein 47. Am J Clin Pathol 118:52–59

    Article  PubMed  Google Scholar 

  • Marsden M, Burke RD (1997) Cloning and characterization of novel beta integrin subunits from a sea urchin. Dev Biol 181:234–245

    Article  PubMed  Google Scholar 

  • Marsden M, Burke RD (1998) The beta L integrin subunit is necessary for gastrulation in sea urchin embryos. Dev Biol 203:134–148

    Article  PubMed  Google Scholar 

  • Matranga V, Kuwasaki B, Noll H (1986) Functional characterization of toposomes from sea urchin blastula embryos by a morphogenetic cell aggregation assay. EMBO J 5:3125–3132

    PubMed  Google Scholar 

  • Matranga V, Di Ferro D, Zito F, Cervello M, Nakano E (1992) A new extracellular matrix protein of the sea urchin embryo with properties of a substrate adhesion molecule. Wilhelm Roux Arch Dev Biol 201:173–178

    Article  Google Scholar 

  • Matranga V, Yokota Y, Zito F, Tesoro V, Nakano E (1995) Biochemical and immunological relationships among fibronectin-like proteins from different sea urchin species. Wilhelm Roux Arch Dev Biol 204:413–417

    Article  Google Scholar 

  • Mayne J, Robinson JJ (1996) Purification and metal ion requirements of a candidate matrix metalloproteinase: a 41 kDa gelatinase activity in the sea urchin embryo. Biochem Cell Biol 74:211–218

    PubMed  Google Scholar 

  • McCarthy RA, Burger MM (1987) In vivo embryonic expression of laminin and its involvement in cell shape change in the sea urchin Sphaerechinus granularis. Development 101:659–671

    Google Scholar 

  • McClay DR (1991) The role of cell adhesion during gastrulation in the sea urchin. In: Keller R, Clark WH Jr, Griffin F (eds) Gastrulation: movements, patterns, and molecules. Plenum Press, New York, pp 313–327

    Google Scholar 

  • McClay DR, Fink RD (1982) Sea urchin hyalin: appearance and function in development. Dev Biol 92:285–293

    Article  PubMed  Google Scholar 

  • McClay DR, Alliegro MC, Black SD (1990) The ontogenetic appearance of extracellular matrix during sea urchin development. In: Adair WS, Mecham R (eds) Organization and assembly of plant and animal extracellular matrix. Academic Press, New York, pp 1–15

    Google Scholar 

  • McCoon PE, Angerer RC, Angerer LM (1996) SpFGFR, a new member of the fibroblast growth factor receptor family, is developmentally regulated during early sea urchin development. J Biol Chem 271:20119–20125

    Article  PubMed  Google Scholar 

  • McCoon PE, Blackstone E, Angerer RC, Angerer LM (1998) Sea urchin FGFR muscle-specific expression: posttranscriptional regulation in embryos and adults. Dev Biol 200:171–181

    Article  PubMed  Google Scholar 

  • McNagny KM, Rossi F, Smith G, Graf T (1996) The eosinophil-specific cell surface antigen, EOS47, is a chicken homologue of the oncofetal antigen melanotransferrin. Blood 87:1343–1352

    PubMed  Google Scholar 

  • Meijer L, Raymond E (2003) Roscovitine and other purines as kinase inhibitors. From starfish oocytes to clinical trials. Acc Chem Res 36:417–425

    Article  PubMed  Google Scholar 

  • Mengerink KJ, Moy GW, Vacquier VD (2002) suREJ3, a polycystin-1 protein, is cleaved at the GPS domain and localizes to the acrosomal region of sea urchin sperm. J Biol Chem. 277:943–948

    Article  PubMed  Google Scholar 

  • Miller JR, McClay DR (1997) Characterization of the role of cadherin in regulating cell adhesion during sea urchin development. Dev Biol 192:323–339

    Article  PubMed  Google Scholar 

  • Miyachi Y, Iwata M, Sato H, Nakano E (1984) Effect of fibronectin on cultured cells derived from isolated micromeres of the sea urchin, Hemicentrotus pulcherrimus. Zool Sci 1:265–271

    Google Scholar 

  • Moore AR (1940) Osmotic and structural properties of the blastular wall in Dendraster excentricus. J Exp Zool 84:73–79

    Article  Google Scholar 

  • Morabito MA, Moczydlowski E (1994) Molecular cloning of bullfrog saxiphilin: a unique relative of the transferrin family that binds saxitoxin. Proc Natl Acad Sci USA 91:2478–2482

    PubMed  Google Scholar 

  • Nakajima Y, Burke RD (1996) The initial phase of gastrulation in sea urchins is accompanied by the formation of bottle cells. Dev Biol 179:436–446

    Article  PubMed  Google Scholar 

  • Neill AT, Moy GW, Vacquier VD (2004) Polycystin-2 associates with the polycystin-1 homolog, suREJ3, and localizes to the acrosomal region of sea urchin spermatozoa. Mol Reprod Dev 67:472–477

    Article  PubMed  Google Scholar 

  • Nishioka D, Marcell V, Cunningham M, Khan M, Von Hoff DD, Izbicka E (2003) The use of early sea urchin embryos in anticancer drug testing. Method Mol Med 85:265–276

    Google Scholar 

  • Noll H, Matranga V, Cascino D, Vittorelli L (1979) Reconstitution of membranes and embryonic development in dissociated blastula cells of the sea urchin by reinsertion of aggregation-promoting membrane proteins extracted with butanol. Proc Natl Acad Sci USA 76:288–292

    PubMed  Google Scholar 

  • Noll H, Matranga V, Cervello M, Humphreys T, Kuwasaki B, Adelson D (1985) Characterization of toposomes from sea urchin blastula cells: a cell organelle mediating cell adhesion and expressing positional information. Proc Natl Acad Sci USA 82:8062–8066

    PubMed  Google Scholar 

  • Okazaki K (1975) Spicule formation by isolated micromeres of the sea urchin embryo. Am Zool 15:567–581

    Google Scholar 

  • Okazaki K, Nijima L (1964) Basement membrane in sea urchin larvae. Embryologia 8:89–100

    Google Scholar 

  • Omoto T, Katow H (1998) Initial analysis of the molecular image of pamlin, a sea urchin cell adhesion protein, by transmission electron microscopy. Dev Growth Differ 40:287–295

    Article  PubMed  Google Scholar 

  • Osanai K (1960) Development of the sea urchin egg with the inhibited breakdown of the cortical granules. Sci Rep Tohoku Univ 36:77–87

    Google Scholar 

  • Page L, Benson S (1992) Analysis of competence in cultured sea urchin micromeres. Exp Cell Res 203:305–311

    Article  PubMed  Google Scholar 

  • Patel SD, Chen CP, Bahna F, Honig B, Shapiro L (2003) Cadherin-mediated cell-cell adhesion: sticking together as a family. Curr Opin Struct Biol 13:690–698

    Article  PubMed  Google Scholar 

  • Pearse VB, Pearse JS (1994) Echinoderm phylogeny and the place of the concentricycloids. In: David B, Guille A, Feral JP, Roux M (eds) Echinoderms through time. Balkema, Rotterdam, pp 121–126

    Google Scholar 

  • Ponce MR, Micol JL, Peterson KJ, Davidson EH (1999) Molecular characterization and phylogenetic analysis of SpBMP5-7, a new member of the TGF-beta superfamily expressed in sea urchin embryos. Mol Biol Evol 16:634–645

    PubMed  Google Scholar 

  • Pucci-Minafra I, Minafra S, Gianguzza F, Casano C (1975) Amino acid composition of collagen extracted from the spicules of sea urchin embryos (Paracentrotus lividus). Boll Zool 42:201–204

    Google Scholar 

  • Qiao D, Nikitina LA, Buznikov GA, Lauder JM, Seidler FJ, Slotkin TA (2003) The sea urchin embryo as a model for mammalian developmental neurotoxicity: ontogenesis of the high-affinity choline transporter and its role in cholinergic trophic activity. Environ Health Perspect 111:1703–1705

    Google Scholar 

  • Raff RA (1996) The shape of life. Genes, development, and the evolution of animal form. University of Chicago Press, Chicago

    Google Scholar 

  • Ramachandran RK, Seid CA, Lee H, Tomlinson CR (1993) PDGF-BB and TGF-alpha rescue gastrulation, spiculogenesis, and LpS1 expression in collagen-disrupted embryos of the sea urchin genus Lytechinus. Mech Dev 44:33–40

    Article  PubMed  Google Scholar 

  • Ramachandran RK, Govindarajan V, Seid CA, Patil S, Tomlinson CR (1995) Role for platelet-derived growth factor-like and epidermal growth factor-like signaling pathways in gastrulation and spiculogenesis in the Lytechinus sea urchin embryo. Dev Dyn 204:77–88

    PubMed  Google Scholar 

  • Ramachandran RK, Wikramanayake AH, Uzman JA, Govindarajan V, Tomlinson CR (1997) Disruption of gastrulation and oral-aboral ectoderm differentiation in the Lytechinus pictus embryo by a dominant/negative PDGF receptor. Development 124:2355–6364

    PubMed  Google Scholar 

  • Rise M, Burke RD (2002) SpADAM, a sea urchin ADAM, has conserved structure and expression. Mech Dev 117:275–281

    Article  PubMed  Google Scholar 

  • Robinson JJ (1997) Characterization of a metalloproteinase: a late stage specific gelatinase activity in the sea urchin embryo. J Cell Biochem 66:337–345

    Article  PubMed  Google Scholar 

  • Robinson JJ, Hall D, Brennan C, Kean P (1992) Hyalin, a sea urchin extraembryonic matrix protein: relationship between calcium binding and hyalin gelation. Arch Biochem Biophys 298:129–134

    Article  PubMed  Google Scholar 

  • Rottinger E, Besnardeau L, Lepage T (2004) A Raf/MEK/ERK signaling pathway is required for development of the sea urchin embryo micromere lineage through phosphorylation of the transcription factor Ets. Development 131:1075–1087. Erratum in: Development 131:2233

    Article  PubMed  Google Scholar 

  • Sahara H, Ishikawa M, Takahashi N, Ohtani S, Sato N, Gasa S, Akino T, Kikuchi K (1997) In vivo anti-tumor effect of 3′-sulphonoquinovosyl 1′-monoacylglyceride isolated from sea urchin (Strongylocentrotus intermedius) intestine. Br J Cancer 75:324–332

    PubMed  Google Scholar 

  • Sahara H, Hanashima S, Yamazaki T, Takahashi S, Sugawara F, Ohtani S, Ishikawa M, Mizushina Y, Ohta K, Shimozawa K, Gasa S, Jimbow K, Sakaguchi K, Sato N, Takahashi N (2002) Anti-tumor effect of chemically synthesized sulfolipids based on sea urchin's natural sulphonoquinovosylmonoacylglycerols. Jpn J Cancer Res 93:85–92

    PubMed  Google Scholar 

  • Sato K, Nishi N, Nomizu M (2004) Characterization of a fasciclin I-like protein with cell attachment activity from sea urchin (Strongylocentrotus intermedius) ovaries. Arch Biochem Biophys 424:1–10

    Article  PubMed  Google Scholar 

  • Scaturro G, Zito F, Matranga V (1998) The oligomeric integrity of toposome is essential for its morphogenetic function. Cell Biol Int 22:321–326

    Article  PubMed  Google Scholar 

  • Schreiber AB, Lax I, Yarden Y, Eshhar Z, Schlessinger J (1981) Monoclonal antibodies against receptor for epidermal growth factor induce early and delayed effects of epidermal growth factor. Proc Natl Acad Sci USA 78:7535–7539

    PubMed  Google Scholar 

  • Sciarrino S, Matranga V (1995) Effects of retinoic acid and dimethylsulfoxide on the morphogenesis of the sea urchin embryo. Cell Biol Int 19:675–680

    Article  PubMed  Google Scholar 

  • Sconzo G, Pirrone AM, Mutolo V, Giudice G (1970) Synthesis of ribosomal RNA in disaggregated cells of sea urchin embryos. Biochim Biophys Acta 199:441–446

    PubMed  Google Scholar 

  • Shih LJ, Chen CA, Chen CP, Hwang SP (2002) Identification and characterization of bone morphogenetic protein 2/4 gene from the starfish Archaster typicus. Comp Biochem Physiol B Biochem Mol Biol 131:143–151

    Article  PubMed  Google Scholar 

  • Shimizu K, Amemiya S, Yoshizato K (1990) Biochemical and immunological characterization of collagen molecules from echinothurioid sea urchin Asthenosoma ijimai. Biochim Biophys Acta 1038:1039–1046

    Google Scholar 

  • Shu DG, Conway Morris S, Han J, Zhang ZF, Liu JN (2004) Ancestral echinoderms from the Chengjiang deposits of China. Nature 430:422–428

    Article  PubMed  Google Scholar 

  • Shyu AB, Raff RA, Blumenthal T (1986) Expression of the vitellogenin gene in female and male sea urchin. Proc Natl Acad Sci USA 83:3865–3869

    PubMed  Google Scholar 

  • Shyu AB, Blumenthal T, Raff RA (1987) A single gene encoding vitellogenin in the sea urchin Strongylocentrotus purpuratus: sequence at the 5′ end. Nucleic Acids Res 15:10405–10417

    PubMed  Google Scholar 

  • Solursh M (1986) Migration of sea urchin primary mesenchyme cells. In: Browder L (eds) The cellular basis of morphogenesis. Plenum, New York, pp 391–431

    Google Scholar 

  • Spiegel E, Howard L (1983) Development of cell junctions in sea-urchin embryos. J Cell Sci 62:27–48

    PubMed  Google Scholar 

  • Spiegel E, Spiegel M (1979) The hyaline layer is a collagen-containing extracellular matrix in sea urchin embryos and reaggregating cells. Exp Cell Res 123:434–441

    Article  PubMed  Google Scholar 

  • Spiegel E, Burger MM, Spiegel M (1980). Fibronectin in the developing sea urchin. J Cell Biol 87:309–313

    Article  PubMed  Google Scholar 

  • Spiegel E, Burger MM, Spiegel M (1983) Fibronectin and laminin in the extracellular matrix and basement membrane of sea urchin embryos. Exp Cell Res 144:47–55

    Article  PubMed  Google Scholar 

  • Stamenkovic I (2003) Extracellular matrix remodelling: the role of matrix metalloproteinases. J Pathol 200:448–464

    Article  PubMed  Google Scholar 

  • Stenzel P, Angerer LM, Smith BJ, Angerer RC, Vale WW (1994) The univin gene encodes a member of the transforming growth factor-beta superfamily with restricted expression in the sea urchin embryo. Dev Biol 166:149–158

    Article  PubMed  Google Scholar 

  • Stone AL, Kroeger M, Sang QX (1999) Structure-function analysis of the ADAM family of disintegrin-like and metalloproteinase-containing proteins. J Protein Chem 18:447–465

    Article  PubMed  Google Scholar 

  • Susan JM, Just ML, Lennarz WJ (2000) Cloning and characterization of alphaP integrin in embryos of the sea urchin Strongylocentrotus purpuratus. Biochem Biophys Res Commun 272:929–935

    Article  PubMed  Google Scholar 

  • Tesoro V, Zito F, Yokota Y, Nakano E, Sciarrino S, Matranga V (1998) A protein of the basal lamina of the sea urchin embryo. Dev Growth Differ 40:527–535

    Article  PubMed  Google Scholar 

  • Thiery JP (2003) Cell adhesion in development: a complex signaling network. Curr Opin Genet Dev 13:365–371

    Article  PubMed  Google Scholar 

  • Unuma T, Okamoto H, Konishi K, Ohta H, Mori K (2001) Cloning of cDNA encoding vitellogenin and its expression in red sea urchin, Pseudocentrotus depressus. Zool Sci 18:559–565

    Article  Google Scholar 

  • Vacquier VD (1969) The isolation and preliminary analysis of the hyaline layer of sea urchin eggs. Exp Cell Res 54:140–142

    Article  PubMed  Google Scholar 

  • Vacquier VD, Mazia D (1968) Twinning of sea urchin embryos by treatment with dithiothreitol. Roles of cell surface interactions and of the hyaline layer. Exp Cell Res 52:459–468

    Article  PubMed  Google Scholar 

  • Venkatesan M, de Pablo F, Vogeli G, Simpson RT (1986) Structure and developmentally regulated expression of a Strongylocentrotus purpuratus collagen gene. Proc Natl Acad Sci USA 83:3351–3355

    PubMed  Google Scholar 

  • Vittorelli ML, Matranga V, Feo S, Giudice G, Noll H (1980) Inverse effects of thymidine incorporation in dissociated blastula cells of the sea urchin Paracentrotus lividus induced by butanol treatment and Fab addition. Cell Differ 9:63–70

    Article  PubMed  Google Scholar 

  • Wang J, Pansky A, Venuti JM, Yaffe D, Nudel U (1998) A sea urchin gene encoding dystrophin-related proteins. Hum Mol Genet 7:581–588

    Article  PubMed  Google Scholar 

  • Wang W, Hong J, Lee CO, Im KS, Choi JS, Jung JH (2004) Cytotoxic sterols and saponins from the starfish Certonardoa semiregularis. J Nat Prod 67:584–591

    Article  PubMed  Google Scholar 

  • Wessel GM, Marchase RB, McClay DR (1984) Ontogeny of the basal lamina in the sea urchin embryo. Dev Biol 103:235–245

    Article  PubMed  Google Scholar 

  • Wessel G, Etkin M, Benson S (1991) Primary mesenchyme cells of the sea urchin embryo require autonomously produced nonfibrillar collagen for spiculogenesis. Dev Biol 148:261–272

    Article  PubMed  Google Scholar 

  • Wessel GM, Berg L, Adelson DL, Cannon G, McClay DR (1998) A molecular analysis of hyalin-a substrate for cell adhesion in the hyaline layer of the sea urchin embryo. Dev Biol 193:115–126

    Article  PubMed  Google Scholar 

  • Wessel GM, Zaydfudim V, Hsu YJ, Laidlaw M, Brooks JM (2000) Direct molecular interaction of a conserved yolk granule protein in sea urchins. Dev Growth Differ 42:507–517

    Article  PubMed  Google Scholar 

  • Wheelock MJ, Johnsony KR (2003a) Cadherins as modulators of cellular phenotype. Annu Rev Cell Dev Biol 19:207–235

    Article  PubMed  Google Scholar 

  • Wheelock MJ, Johnsony KR (2003b) Cadherin-mediated cellular signaling. Curr Opin Cell Biol 15:509–514

    Article  PubMed  Google Scholar 

  • White JM (2003) ADAMs: modulators of cell-cell and cell-matrix interactions. Curr Opin Cell Biol 15:598–606

    Article  PubMed  Google Scholar 

  • Wolpert L, Mercer EH (1963) An electron microscope study of the development of the blastula of the sea urchin embryo and its radial polarity. Exp Cell Res 30:280–300

    Article  PubMed  Google Scholar 

  • Wray GA, Lowe CJ (2000) Developmental regulatory genes and echinoderm evolution. Syst Biol 49:28–51

    Article  PubMed  Google Scholar 

  • Yamada KM (1997) Integrin signaling. Matrix Biol 16:137–141

    Article  PubMed  Google Scholar 

  • Yokota Y, Kato KH (1988) Degradation of yolk granules in sea urchin eggs and embryos. Cell Differ 23:191–199

    Article  PubMed  Google Scholar 

  • Yokota Y, Matranga V, Zito F, Cervello M, Nakano E (1994) Nectins in sea urchin eggs and embryos. J Mar Biol Assoc UK 74:27–34

    Google Scholar 

  • Yokota Y, Unuma T, Moriyama A, Yamano K (2003) Cleavage site of a major yolk protein (MYP) determined by cDNA isolation and amino acid sequencing in sea urchin, Hemicentrotus pulcherrimus. Comp Biochem Physiol B Biochem Mol Biol 135:71–81

    Article  PubMed  Google Scholar 

  • Zito F, Tesoro V, McClay DR, Nakano E, Matranga V (1998) Ectoderm cell-ECM interaction is essential for sea urchin embryo skeletogenesis. Dev Biol 196:184–192

    Article  PubMed  Google Scholar 

  • Zito F, Nakano E, Sciarrino S, Matranga V (2000) Regulative specification of ectoderm in skeleton disrupted sea urchin embryos treated with monoclonal antibody to Pl-nectin. Dev Growth Differ 42:499–506

    Article  PubMed  Google Scholar 

  • Zito F, Costa C, Sciarrino S, Poma V, Russo R, Angerer LM, Matranga V (2003) Expression of univin, a TGF-beta growth factor, requires ectoderm-ECM interaction and promotes skeletal growth in the sea urchin embryo. Dev Biol 264:217–227

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zito, F., Costa, C., Sciarrino, S., Cavalcante, C., Poma, V., Matranga, V. (2005). Cell Adhesion and Communication: A Lesson from Echinoderm Embryos for the Exploitation of New Therapeutic Tools. In: Matranga, V. (eds) Echinodermata. Progress in Molecular and Subcellular Biology, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27683-1_2

Download citation

Publish with us

Policies and ethics