Skip to main content

Root Architecture and Nutrient Acquisition

  • Chapter
Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aiken RM, Smucker AJM (1996) Root system regulation of whole plant growth. Annu Rev Phytopathol 34:325–346

    Article  CAS  PubMed  Google Scholar 

  • Anderson SH, Hopmans JW (1994) Tomography of soil-water-root processes. Vol SSSA Spec Publ no 36. American Society of Agronomy, Soil Science Society of America, Madison, WI

    Google Scholar 

  • Anonymous (1887) Report of the Pennsylvania State College Agricultural Experimental Station. Official Document no 13

    Google Scholar 

  • Bailey PHJ, Currey JD, Fitter AH (2002) The role of root system architecture and root hairs in promoting anchorage against uprooting forces in Allium cepa and root mutants of Arabidopsis thaliana. J Exp Bot 53:333–340

    Article  CAS  PubMed  Google Scholar 

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach, 2nd edn. Wiley, New York

    Google Scholar 

  • Bates TR, Lynch JP (1996) Stimulation of root hair elongation in Arabidopsis thaliana by low phosphorus availability. Plant Cell Environ 19:529–538

    Article  CAS  Google Scholar 

  • Berntson GM (1994) Modelling root architecture: are there tradeoffs between efficiency and potential of resource acquisition? New Phytol 127:483–493

    Article  Google Scholar 

  • Berntson GM (1997) Topological scaling and plant root system architecture: developmental and functional hierarchies. New Phytol 135:621–634

    Article  Google Scholar 

  • Berntson G, Lynch J, Snapp S (1998) Fractal geometry and plant root systems: current perspectives and future applications. In: Baveye P, Parlange J, Stewart B (eds) Fractals in soil science. Lewis, New York

    Google Scholar 

  • Bloom AJ, Chapin FSI, Mooney HA (1985) Resource limitation in plants — an economic analogy. Annu Rev Ecol Syst 16:36:33–392

    Google Scholar 

  • Bonser AM, Lynch J, Snapp S (1996) Effect of phosphorus deficiency on growth angle of basal roots in Phaseolus vulgaris. New Phytol 132:281–288

    Article  CAS  PubMed  Google Scholar 

  • Borch K, Bouma TJ, Lynch JP, Brown KM (1999) Ethylene: a regulator of root architectural responses to soil phosphorus availability. Plant Cell Environ 22:425–431

    Article  CAS  Google Scholar 

  • Borlaug NE (1972) The green revolution, peace, and humanity. In: Speech delivered upon receipt of the 1970 Nobel Peace Prize, vol CIMMYT reprint and translation series no 3. Centro Internacional de Mejoramiento de Maiz y Trigo, El Batan, Mexico

    Google Scholar 

  • Brown LR, Kane H (1994) Full house: reassessing the Earth’s population carrying capacity. Norton, New York

    Google Scholar 

  • Caldwell MM, Richards JH (1986) Competing root systems: morphology and models of absorption. In: Givnish TJ (ed) On the economy of plant form and function. Cambridge University Press, Cambridge, pp 251–273

    Google Scholar 

  • Cannon WA (1911) The root habits of desert plants. Vol Publ no 131, Carnegie Institute of Washington, Washington, DC

    Google Scholar 

  • Cannon W (1949) A tentative classification of root systems. Ecology 30:542–548

    Article  Google Scholar 

  • Cao K, Ohkubo T (1998) Allometry, root/shoot ratio and root architecture in understory saplings of deciduous dicotyledonous trees in central Japan. Ecol Res 13:217–227

    Article  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28:545–570

    Article  Google Scholar 

  • Cermak J, Riguzzi F, Ceulemans R (1998) Scaling up from the individual tree to the stand level in Scots pine. I. Needle distribution, overall crown and root geometry. Ann Sci For 55:63–88

    Google Scholar 

  • CIAT (1999) Bean project: annual report. Centro Internacional de Agricultura Tropical, Cali, Colombia

    Google Scholar 

  • Conway G (1997) The doubly green revolution: food for all in the 21st century. Comstock, Cornell University Press, Ithaca, NY

    Google Scholar 

  • Coutts MP (1983) Root architecture and tree stability. Plant Soil 71:171–188

    Article  Google Scholar 

  • Doussan C, Vercambre G, Pages L (1998) Modelling of the hydraulic architecture of root systems: an integrated approach to water absorption-distribution of axial and radial conductances in maize. Ann Bot 81:225–232

    Article  Google Scholar 

  • Eissenstat D (1997) Trade-offs in root form and function. In: Jackson L (ed) Ecology in agriculture. Academic Press, San Diego, pp 173–199

    Google Scholar 

  • Ennos AR, Fitter AH (1992) Comparative functional morphology of the anchorage systems of annual dicots. Funct Ecol 6:71–78

    Google Scholar 

  • Eshel A, Waisel Y (1996) Multiform and multifunction of various constituents of one root system. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 175–192

    Google Scholar 

  • Evans L (1998) Feeding the ten billion: plants and population growth. Cambridge University Press, Cambridge

    Google Scholar 

  • Ewers FW, Carlton MR, Fisher JB, Kolb KJ, Tyree MT (1997) Vessel diameters in roots versus stems of tropical lianas and other growth forms. IAWA J 18:261–279

    Google Scholar 

  • Fisher MCT, Eissenstat DM, Lynch JP (2002) Lack of evidence for programmed root senescence in common bean (Phaseolus vulgaris) grown at different levels of phosphorus supply. New Phytol 153:63–71

    Article  Google Scholar 

  • Fitter A (1987) An architectural approach to the comparative ecology of plant root systems. New Phytol 106:61–77

    Google Scholar 

  • Fitter A (1991a) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 3–25

    Google Scholar 

  • Fitter AH (1991b) The ecological significance of root system architecture: an economic approach. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, New York, pp 229–243

    Google Scholar 

  • Fitter AH (1994) Architecture and biomass allocation as components of the plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 305–323

    Google Scholar 

  • Fitter A, Stickland T, Harvey M, Wilson G (1991) Architectural analysis of plant root systems. 1. Architectural correlates of exploitation efficiency. New Phytol 118:385–382

    Google Scholar 

  • Fitter A, Williamson L, Linkohr B, Leyser O (2002) Root system architecture determines fitness in an Arabidopsis mutant in competition for immobile phosphate ions but not for nitrate ions. Proc R Soc Lond Ser B Biol Sci 269:2017–2022

    Article  CAS  Google Scholar 

  • Ge ZY, Rubio G, Lynch JP (2000) The importance of root gravitropism for inter-root competition and phosphorus acquisition efficiency: results from a geometric simulation model. Plant Soil 218:159–171

    Article  CAS  PubMed  Google Scholar 

  • Gorissen A (1996) Elevated CO2 evokes quantitative and qualitative changes in carbon dynamics in a plant/soil system: mechanisms and implications. Plant Soil 187:289–298

    Article  CAS  Google Scholar 

  • Gregory PJ, Palta JA, Batts GR (1996) Root systems and root:mass ratio — carbon allocation under current and projected atmospheric conditions in arable crops. Plant Soil 187:221–228

    Article  CAS  Google Scholar 

  • Grime J (1991) Nutrition, environment and plant ecology: an overview. In: Porter J, Lawlor D (eds) Plant growth: interactions with nutrition and environment. Cambridge University Press, Cambridge, pp 249–267

    Google Scholar 

  • Hallberg G (1989) Nitrate in ground water in the United States. In: Follett RF (ed) Nitrogen management and ground water protection. Elsevier, New York, pp 35–74

    Google Scholar 

  • Heeraman DA, Hopmans JW, Clausnitzer V (1997) Three dimensional imaging of plant roots in situ with X-ray computed tomography. Plant Soil 189:167–179

    CAS  Google Scholar 

  • Hetrick BAD (1991) Mycorrhizas and root architecture. Experientia 47:355–362

    Article  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22:811–820

    Article  Google Scholar 

  • Huber-Sannwald E, Pyke DA, Caldwell MM (1997) Perception of neighbouring plants by rhizomes and roots: morphological manifestations of a clonal plant. Can J Bot 75:2146–2157

    Article  Google Scholar 

  • Huber-Sannwald E, Pyke DA, Caldwell MM, Durham S (1998) Effects of nutrient patches and root systems on the clonal plasticity of a rhizomatous grass. Ecology 79:2267–2280

    Article  Google Scholar 

  • Izumi Y, Kono Y, Yamauchi A, Iijima M (1997) Genotypic variation in the development of seminal root system of rice under different culture conditions in vitro. Jpn J Crop Sci 66:427–435

    Google Scholar 

  • Jeschke W, Kirkby E, Peuke A, Pate J, Hartung W (1997) Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus comunis L.). J Exp Bot 48:75–91

    Article  CAS  Google Scholar 

  • Juergens-Gschwind S (1989) Ground water nitrates in other developed countries (Europe) — relationships to land use patterns. In: Follett RF (ed) Nitrogen management and ground water protection. Elsevier, New York, pp 75–138

    Google Scholar 

  • Kage H (1997) Relative contribution of mass flow and diffusion to nitrate transport towards roots. Z Pflanzenernähr Bodenkd 160:171–178

    CAS  Google Scholar 

  • Kaplan L, Kaplan L (1988) Phaseolus in archeology. In: Gepts P (ed) Genetic resources of Phaseolus beans. Kluwer, Dordrecht, pp 125–142

    Google Scholar 

  • Kettler JS (1996) Weeds in the traditional slash/mulch practice of frijol tapado: indigenous characterization and ecological implications. Weed Res 36:385–393

    Google Scholar 

  • Kutschera L, Lichtenegger E (1992) Wurzelatlas Mitteleuropäischer Grünlandpflanzen. Band 2. Pteridophyta und Dicotyledoneae. Teil 1. Morphologie, Anatomie, Ökologie, Verbreitung, Soziologie, Wirtschaft. Gustav Fischer, Stuttgart

    Google Scholar 

  • Lambers H (1987) Growth, respiration, exudation and symbiotic associations: the fate of carbon translocated to the roots. In: Gregory PJ, Lake JV, Rose DA (eds) Root development and function. Cambridge University Press, Cambridge, pp 125–146

    Google Scholar 

  • Li HB, Xia M, Wu P (2001) Effect of phosphorus deficiency stress on rice lateral root growth and nutrient absorption. Acta Bot Sin 43:1154–1160

    CAS  Google Scholar 

  • Liao H, Rubio G, Yan XL, Cao AQ, Brown KM, Lynch JP (2001) Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 232:69–79

    Article  CAS  PubMed  Google Scholar 

  • Liao H, Yan X, Rubio G, Beebe SE, Blair MW, Lynch JP (2004) Genetic mapping of basal root gravitropism and phosphorus acquisition efficiency in common bean. Funct Plant Biol 31:959–970

    Article  CAS  Google Scholar 

  • Lynch JP (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    CAS  PubMed  Google Scholar 

  • Lynch JP (1998) The role of nutrient efficient crops in modern agriculture. J Crop Prod 1:241–264

    Article  Google Scholar 

  • Lynch JP, Brown KM (1997) Ethylene and plant responses to nutritional stress. Physiol Plant 100:613–619

    Article  CAS  Google Scholar 

  • Lynch JP, Brown K (1998) Root architecture and phosphorus acquisition efficiency in common bean. In: Lynch J, Deikman J (eds) Phosphorus in plant biology: regulatory roles in ecosystem, organismic, cellular, and molecular processes. American Society of Plant Physiologists, Rockville, MD

    Google Scholar 

  • Lynch JP, Brown KM (2001) Topsoil foraging — an architectural adaptation of plants to low phosphorus availability. Plant Soil 237:225–237

    Article  CAS  Google Scholar 

  • Lynch JP, Nielsen K (1996) Simulation of root system architecture. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 247–258

    Google Scholar 

  • Lynch JP, van Beem JJ (1993) Growth and architecture of seedling roots of common bean genotypes. Crop Sci 33:1253–1257

    Google Scholar 

  • Ma Z, Bielenberg DG, Brown KM, Lynch JP (2001a) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    Article  CAS  Google Scholar 

  • Ma Z, Walk TC, Marcus A, Lynch JP (2001b) Morphological synergism in root hair length, density, initiation and geometry for phosphorus acquisition in Arabidopsis thaliana: a modeling approach. Plant Soil 236:221–235

    Article  CAS  Google Scholar 

  • Ma Z, Baskin TI, Brown KM, Lynch JP (2003) Regulation of root elongation under phosphorus stress involves changes in ethylene responsiveness. Plant Physiol 131:1381–1390

    Article  CAS  PubMed  Google Scholar 

  • Mahall BE (1998) Inter-root communications and the structure of desert plant communities. In: Flores HE, Lynch JP, Eissenstat D (eds) Radical biology: advances and perspectives on the function of plant roots. American Society of Plant Physiologists, Rockville, MD, pp 265–280

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. WH Freeman, New York

    Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Masi CEA, Maranville JW (1998) Evaluation of sorghum root branching using fractals. J Agric Sci 131:259–265

    Article  Google Scholar 

  • Miller CR (1998) Root architecture of common bean (Phaseolus vulgaris L.): adaptive nature and dynamic response to low phosphorus. MSc Thesis, Pennsylvania State University, University Park, Pennsylvania

    Google Scholar 

  • Miller CR, Nielsen KL, Lynch JP, Beck D (1998) Adventitious root response in field grown common bean: a possible adaptive strategy to low phosphorus conditions. In: Flores HE, Lynch JP, Eissenstat D (eds) Radical biology: advances and perspectives on the function of plant roots. American Society of Plant Physiologists, Rockville, MD, pp 394–396

    Google Scholar 

  • Miller CR, Ochoa I, Nielsen KL, Beck D, Lynch JP (2003) Genetic variation for adventitious rooting in response to low phosphorus availability: potential utility for phosphorus acquisition from stratified soils. Funct Plant Biol 30:973–985

    Article  CAS  Google Scholar 

  • National Research Council (1989) Alternative agriculture. National Academy Press, Washington, DC

    Google Scholar 

  • Nielsen KL, Lynch J, Jablokow AG, Curtis PS (1994) Carbon cost of root systems: an architectural approach. Plant Soil 165:161–169

    CAS  Google Scholar 

  • Nielsen KL, Lynch JP, Weiss HN (1997) Fractal geometry of bean root systems: correlations between spatial and fractal dimension. Am J Bot 84:26–33

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KL, Bouma TJ, Lynch JP, Eissenstat DM (1998a) Effects of phosphorus availability and vesicular-arbuscular mycorrhizas on the carbon budget of common bean (Phaseolus vulgaris). New Phytol 139:647–656

    Article  Google Scholar 

  • Nielsen KL, Miller CR, Beck D, Lynch JP (1998b) Fractal geometry of root systems: field observations of contrasting genotypes of common bean (Phaseolus vulgaris L.) grown under different phosphorus regimes. Plant Soil 206:181–190

    Article  CAS  Google Scholar 

  • Nielsen KL, Eshel A, Lynch JP (2001) The effect of phosphorus availability on the carbon economy of contrasting common bean (Phaseolus vulgaris L.) genotypes. J Exp Bot 52:329–339

    Article  CAS  PubMed  Google Scholar 

  • Niklas K (1994) Plant allometry: the scaling of form and process. University of Chicago Press, Chicago

    Google Scholar 

  • Niklas K (1997) The evolutionary biology of plants. The University of Chicago Press, Chicago

    Google Scholar 

  • Norman JR, Atkinson D, Hooker JE (1996) Arbuscular mycorrhizal fungal-induced alteration to root architecture in strawberry and induced resistance to the root pathogen Phytophthora fragariae. Plant Soil 185:191–198

    Article  CAS  Google Scholar 

  • O’Toole JC, Bland WL (1987) Genotypic variations in the root system. Adv Agron 41:91–140

    Google Scholar 

  • Ozier-Lafontaine H, Lecompte F, Sillon JF (1999) Fractal analysis of the root architecture of Gliricidia sepium for the spatial prediction of root branching, size and mass: model development and evaluation in agroforestry. Plant Soil 209:167–180

    Article  CAS  Google Scholar 

  • Pages L (1999) Root system architecture: from its representation to the study of its elaboration. Agronomie 19:295–304

    Google Scholar 

  • Pages L, Bruckler L, Pellerin S, Lafolie F (1997) Root architecture and water uptake. L’eau dans l’espace rural: production végétale et qualité de l’eau. Institut National de la Recherche Agronomique, Avignon

    Google Scholar 

  • Pregitzer KS, DeForest JL, Burton AJ, Allen MF, Ruess RW, Hendrick RL (2002) Fine root architecture of nine North American trees. Ecol Monogr 72:293–309

    Google Scholar 

  • Pritchard SG, Rogers HH (2000) Spatial and temporal deployment of crop roots in CO2-enriched environments. New Phytol 147:55–71

    Article  CAS  Google Scholar 

  • Richards R, Passioura J (1981) Seminal root morphology and water use of wheat. II. Genetic variation. Crop Sci 21:253–255

    Google Scholar 

  • Richards R, Passioura J (1989) A breeding program to reduce the diameter of the major xylem vessel in the seminal roots of wheat and its effect on grain yield in rain-fed environments. Aust J Agric Res 40:943–950

    Article  Google Scholar 

  • Riedell WE (1990) Rootworm and mechanical damage effects on root morphology and water relations in maize. Crop Sci 30:628–631

    Article  Google Scholar 

  • Riedell WE, Reese RN (1999) Maize morphology and shoot CO2 assimilation after root damage by western corn rootworm larvae. Crop Sci 39:1332–1340

    Google Scholar 

  • Robinson D (1990) Phosphorus availability and cortical senescence in cereal roots. J Theor Biol 145:257–265

    CAS  Google Scholar 

  • Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogenrich patches confers competitive advantage. Proc R Soc Lond Ser B Biol Sci 266:431–435

    Article  Google Scholar 

  • Rubio G, Walk T, Ge ZY, Yan XL, Liao H, Lynch JP (2001) Root gravitropism and belowground competition among neighbouring plants: a modelling approach. Ann Bot 88:929–940

    Article  Google Scholar 

  • Rubio G, Liao H, Yan X, Lynch JP (2003a) Topsoil foraging and its role in plant competitiveness for phosphorus in common bean. Crop Sci 43:598–607

    Google Scholar 

  • Rubio G, Zhu J, Lynch JP (2003b) A critical test of the two prevailing theories of plant response to nutrient availability. Am J Bot 90(1):143–152

    CAS  Google Scholar 

  • Rundel PW, Nobel PS (1991) Structure and function in desert root systems. In: Atkinson D (ed) Plant root growth: an ecological perspective. Blackwell, Oxford, Spec Publ no 10, Br Ecol Soc, pp 349–378

    Google Scholar 

  • Ryden JC, Syers JK, Harris RF (1973) Phosphorus in runoff and streams. Adv Agron 25:1–45

    CAS  Google Scholar 

  • Schellenbaum L, Berta G, Ravolanirina F, Tisserant B, Gianinazzi S, Gianinazzi-Pearson V, Fitter AH (1991) Influence of endomycorrhizal infection on root morphology in a micropropagated woody plant species (Vitis vinifera L.). Ann Bot 68:135–141

    Google Scholar 

  • Schenk HJ, Callaway RM, Mahall BE (1999) Spatial root segregation: are plants territorial? Adv Ecol Res 28:145–180

    CAS  Google Scholar 

  • Shane MW, McCully ME, Canny MJ (2000) Architecture of branch-root junctions in maize: structure of the connecting xylem and the porosity of pit membranes. Ann Bot 85:613–624

    Article  Google Scholar 

  • Shiva V (1991) The green revolution in the Punjab. Ecologist 21:57–60

    Google Scholar 

  • Smith SN (1934) Response of inbred lines and crosses in maize to variations of nitrogen and phosphorus supplied as nutrients. J Am Soc Agron 26:785–804

    CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Snapp SS, Lynch JP (1996) Phosphorus distribution and remobilization in bean plants as influenced by phosphorus nutrition. Crop Sci 36:929–935

    Article  Google Scholar 

  • Somma F, Hopmans JW, Clausnitzer V (1998) Transient three-dimensional modeling of soil water and solute transport with simultaneous root growth, root water and nutrient uptake. Plant Soil 202:281–293

    Article  CAS  Google Scholar 

  • Steudle E, Peterson CA (1998) How does water get through roots? J Exp Bot 49:775–788

    Article  CAS  Google Scholar 

  • Tatsumi J, Yamauchi A, Kono Y (1989) Fractal analysis of plant root systems. Ann Bot 64:499–503

    Google Scholar 

  • Tinker P, Nye P (2000) Solute movement in the rhizosphere. Oxford University Press, New York

    Google Scholar 

  • Tunney H, Carton OT, Brookes PC, Johnston AE (eds) (1997) Phosphorus loss from soil to water. CAB, Wallingford

    Google Scholar 

  • Tyree MT, Ewers F (1996) Hydraulic architecture of woody tropical plants. In: Tropical forest plant ecophysiology. Chapman & Hall, New York, pp 217–243

    Google Scholar 

  • Vercambre G, Doussan C, Pages L, Habib R, Pierret A (2002) Influence of xylem development on axial hydraulic conductance within Prunus root systems. Trees Struct Funct 16:479–487

    Google Scholar 

  • Walk TC, van Erp E, Lynch JP (2004) Modelling applicability of fractal analysis to efficiency of soil exploration by roots. Ann Bot 94:119–128

    Article  PubMed  Google Scholar 

  • Ward J, Kuhn C, Tegeder M, Frommer W (1998) Sucrose transport in higher plants. Int Rev Cytol 178:41–71

    CAS  PubMed  Google Scholar 

  • Watt M, Evans JR (1999) Proteoid roots. Physiology and development. Plant Physiol 121:317–323

    Article  CAS  PubMed  Google Scholar 

  • Weaver J (1926) Root development of field crops. McGraw-Hill, New York

    Google Scholar 

  • Webster CC, Wilson PN (1998) Agriculture in the tropics, 3rd edn. Blackwell, Oxford

    Google Scholar 

  • Whipps J (1990) Carbon economy. In: Lynch J (ed) The rhizosphere. Wiley, Chichester, pp 59–97

    Google Scholar 

  • World Bank (2001) World development report: attacking poverty. Oxford University Press, Oxford

    Google Scholar 

  • Worldwatch Institute (2001) State of the world 2001. WW Norton, New York

    Google Scholar 

  • Wullschleger S, Lynch J, Berntson GM (1994) Modeling the belowground response of plants and soil biota to edaphic and climate change — what can we expect to gain? Plant Soil 165:149–160

    CAS  Google Scholar 

  • Yan X, Liao H, Beebe SE, Blair MW, Lynch JP (2004) QTL mapping of root hair and acid exudation traits and their relationship to phosphorus uptake in common bean. Plant Soil (in press)

    Google Scholar 

  • Yanni YG, Rizk RY, Abd El-Fattah FK, Squartini A, Corich V, Giacomini A, de Bruijn F, Rademaker J, Maya-Flores J, Ostrom P, Vega-Hernandez M, Hollingsworth RI, Martinez-Molina E, Mateos P, Velazquez E, Wopereis J, Triplett E, Umali-Garcia M, Anarna JA, Rolfe BG, Ladha JK, Hill J, Mujoo R, Ng PK, Dazzo FB (2001) The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots. Aust J Plant Physiol 28:845–870

    CAS  Google Scholar 

  • Zhang H, Forde BG (1997) An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407–409

    Article  Google Scholar 

  • Zhu J (2003) Composite interval mapping and physiological function of root traits conferring phosphorus efficiency in maize (Zea mays L.). PhD Diss, Pennsylvania State University, University Park, PA

    Google Scholar 

  • Zobel RW (1986) Rhizogenetics (root genetics) of vegetable crops. Hortic Sci 21:956–959

    Google Scholar 

  • Zobel R (1996) Genetic control of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 21–30

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lynch, J. (2005). Root Architecture and Nutrient Acquisition. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_7

Download citation

Publish with us

Policies and ethics