Skip to main content

Integrated Root Responses to Variations in Nutrient Supply

  • Chapter
Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson AN, McBratney AB, Crawford JW (1998) Applications of fractals to soil studies. Adv Agron 63:1–76

    CAS  Google Scholar 

  • Baldwin JP (1975) A quantitative analysis of the factors affecting plant nutrient uptake from soils. J Soil Sci 26:195–206

    CAS  Google Scholar 

  • BassiriRad H, Gutschick VP, Lussenhop J (2001) Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO2. Oecologia 126:305–320

    Article  Google Scholar 

  • Beck E (1996) Regulation of shoot/root ratio by cytokinins from roots in Urtica dioica. Plant Soil 185:3–12

    Article  CAS  Google Scholar 

  • Berleth T, Sachs T (2001) Plant morphogenesis: long distance coordination and local patterning. Curr Opin Plant Biol 4:57–62

    Article  CAS  PubMed  Google Scholar 

  • Brewster JL, Bhat KKS, Nye PH (1976) The possibility of predicting solute uptake and plant growth response from independently measured soil and plant characteristics. V. The growth and phosphorus uptake of rape in soil at a range of phosphorus concentrations and a comparison of the results with the predictions of a simulation model. Plant Soil 44:295–328

    Article  CAS  Google Scholar 

  • Brouwer R (1962) Nutritive influences on the distribution of dry matter in the plant. Neth J Agric Sci 10:361–376

    Google Scholar 

  • Campbell BD, Grime JP (1989) A comparative-study of plant responsiveness to the duration of episodes of mineral nutrient enrichment. New Phytol 112:261–267

    Article  Google Scholar 

  • Casper BB, Cahill JF (1998) Population-level responses to nutrient heterogeneity and density by Abutilon theophrasti (Malvaceae): an experimental neighborhood approach. Am J Bot 85:1680–1687

    Article  Google Scholar 

  • Cheeseman JM (1993) Plant-growth modeling without integrating mechanisms. Plant Cell Environ 16:137–147

    Article  Google Scholar 

  • Citovsky V, Zambryski P (2000) Systemic transport of RNA in plants. Trends Plant Sci 5:52–54

    Article  CAS  PubMed  Google Scholar 

  • Cowan IR (1977) Stomatal behavior and environment. Adv Bot Res 4:117–228

    Google Scholar 

  • Cowan IR, Farquhar GD (1977) Stomatal function in relation to leaf metabolism and environment. Symp Soc Exp Biol 31:471–505

    CAS  PubMed  Google Scholar 

  • Drew MC (1975) Comparison of the effect of a localized supply of phosphate, nitrate, ammonium, and potassium on the growth of the seminal root system and the shoot system of barley. New Phytol 75:479–490

    Article  CAS  Google Scholar 

  • Drew MC, Saker LR, Ashley TW (1973) Nutrient supply and the growth of the seminal root system in barley. I. The effect of nitrate concentration on the growth of axes and laterals. J Exp Bot 24:1189–1202

    CAS  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova E, Fagan WF, Markow TA, Cotner JB, Harrison JH, Hobbie SE, Odell GM, Weider LJ (2000) Biological stoichiometry from genes to ecosystems. Ecol Lett 3:540–550

    Article  Google Scholar 

  • Enquist BJ (2003) Scaling the macroecological and evolutionary implications of size and metabolism within and across plant taxa. In: Blackburn TH, Gaston KJ (eds) Macroecology: concepts and consequences. Blackwell, Oxford, pp 321–341

    Google Scholar 

  • Enquist BJ, Niklas KJ (2002) Global allocation rules for patterns of biomass partitioning in seed plants. Science 295:1517–1520

    Article  CAS  PubMed  Google Scholar 

  • Enquist BJ, Brown JH, West GB (1998) Allometric scaling of plant energetics and population density. Nature 395:163–165

    Article  CAS  Google Scholar 

  • Farley RA, Fitter AH (1999) Temporal and spatial variation in soil resources in a deciduous woodland. J Ecol 87:688–696

    Article  Google Scholar 

  • Farrar J (1996) Regulation of root weight ratio is mediated by sucrose. Plant Soil 185:13–19

    Article  CAS  Google Scholar 

  • Fitter AH (1994) Architecture and biomass allocation as components of plastic response of root systems to soil heterogeneity. In: Caldwell MM, Pearcy RW (eds) Exploitation of environmental heterogeneity by plants. Academic Press, San Diego, pp 305–323

    Google Scholar 

  • Forde BG (2000) Nitrate transporters in plants: structure, function and regulation. Biochim Biophys Acta 1465:219–235

    CAS  PubMed  Google Scholar 

  • Forde BG (2002a) Local and long-range signalling pathways regulating plant responses to nitrate. Annu Rev Plant Physiol Mol Biol 53:203–224

    CAS  Google Scholar 

  • Forde BG (2002b) The role of long-distance signalling in plant responses to nitrate and other nutrients. J Exp Bot 53:39–43

    Article  CAS  PubMed  Google Scholar 

  • Forde B, Lorenzo H (2001) The nutritional control of root development. Plant Soil 232:51–68

    Article  CAS  Google Scholar 

  • Gallardo A, RodrÍguez-Saucedo JJ, Covelo F, Fernández-Alés R (2000) Soil nitrogen heterogeneity in a Dehesa ecosystem. Plant Soil 222:71–82

    Article  CAS  Google Scholar 

  • Gansel X, Munos S, Tillard P, Gojon A (2001) Differential regulation of the NO3 and NH4 + transporter genes AtNrt2.1 and AtAmt1.1 in Arabidopsis: relation with long-distance and local controls by N status of the plant. Plant J 26:143–155

    Article  CAS  PubMed  Google Scholar 

  • Gardner WR (1960) Dynamic aspects of water availability to plants. Soil Sci 89:63–73

    Google Scholar 

  • Gersani M, Brown JS, O’Brien EE, Maina GM, Abramsky Z (2001) Tragedy of the commons as a result of root competition. J Ecol 89:660–669

    Article  Google Scholar 

  • Geßler A, Schultze M, Schrempp S, Rennenberg H (1998) Interaction of phloem-translocated amino compounds with nitrate net uptake by the roots of beech (Fagus sylvatica) seedlings. J Exp Bot 49:1529–1537

    Article  Google Scholar 

  • Gillooly JF, Charnov EL, West GB, Savage VM, Brown JH (2002) Effects of size and temperature on developmental time. Nature 417:70–73

    Article  CAS  PubMed  Google Scholar 

  • Gollan T, Passioura JB, Munns R (1986) Soil water status affects the stomatal conductance of fully turgid wheat and sunflower leaves. Aust J Plant Physiol 13:459–464

    Google Scholar 

  • Grime JP, 33 others (1997) Integrated screening validates primary axes of specialisation in plants. Oikos 79:259–281

    Google Scholar 

  • Hodge A (2004) The plastic plant: responses to heterogeneous supplies of nutrients. New Phytol 162(1):9–24

    Article  Google Scholar 

  • Hopmans JW, Bristow KL (2002) Current and future needs of root water and nutrient uptake modeling. Adv Agron 77:103–183

    Google Scholar 

  • Imsande J, Touraine B (1994) N demand and the regulation of nitrate uptake. Plant Physiol 105:3–7

    CAS  PubMed  Google Scholar 

  • Jackson RB, Caldwell MM (1993) Geostatistical patterns of soil heterogeneity around individual perennial plants. J Ecol 82:683–692

    Google Scholar 

  • Jackson RB, Caldwell MM (1996) Integrating resource heterogeneity and plant plasticity: modelling nitrate and phosphate uptake in a patchy soil environment. J Ecol 84:891–903

    Google Scholar 

  • Jeschke WD, Hartung W (2000) Root-shoot interactions in mineral nutrition. Plant Soil 226:57–69

    Article  CAS  Google Scholar 

  • Jorgensen RA, Atkinson RG, Forster RLS, Lucas WJ (1998) An RNA-based information superhighway in plants. Science 279:1486–1487

    Article  CAS  PubMed  Google Scholar 

  • Lappartient AG, Vidmar JJ, Leutsek T, Glass ADM, Touraine B (1999) Inter-organ signalling in plants: regulation of ATP sulfurylase and sulfate transporter genes expression in roots mediated by phloem-translocated compound. Plant J 18:89–95

    Article  CAS  PubMed  Google Scholar 

  • Leyser O, Fitter A (1998) Roots are branching out in patches. Trends Plant Sci 3:203–204

    Article  Google Scholar 

  • MacDonald AJS, Davies WJ (1996) Keeping in touch: responses of whole plants to deficits in water and nitrogen supply. Adv Bot Res 22:229–300

    Google Scholar 

  • Magnani F, Grace J (2000) Plants as self-organising systems. In: Marshall B, Roberts JA (eds) Leaf development and canopy growth. Sheffield Academic Press, Sheffield, pp 36–58

    Google Scholar 

  • Marschner H (1986) Mineral nutrition in higher plants. Academic Press, London

    Google Scholar 

  • Martin A, del Pozo JC, Iglesias J, Rubio V, Solano R, de la Peña A, Leyva A, Paz-Ares J (2000) Influence of cytokinins on the expression of phosphate starvation responsive genes in Arabidopsis. Plant J 24:559–567

    Article  CAS  PubMed  Google Scholar 

  • Muller B, Touraine B (1992) Inhibition of NO3 uptake by various phloem translocated amino acids in soybean seedlings. J Exp Bot 43:617–623

    CAS  Google Scholar 

  • Munns R, Cramer GR (1996) Is coordination of leaf and root growth mediated by abscisic acid? Plant Soil 185:33–49

    Article  CAS  Google Scholar 

  • Passioura JB (1980) The transport of water from root to shoot in wheat seedlings. J Exp Bot 31:333–339

    CAS  Google Scholar 

  • Passioura JB (1991) Soil structure and plant growth. Aust J Soil Res 29:717–728

    Article  Google Scholar 

  • Passioura JB (1996) Simulation models: science, snake oil, or engineering? Agron J 88:690–694

    Article  Google Scholar 

  • Poorter H, Nagel O (2000) The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: a quantitative review. Aust J Plant Physiol 27:595–607

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Ellsworth DS (1997) From tropics to tundra: global convergence in plant functioning. Proc Natl Acad Sci USA 94:13730–13734

    Article  CAS  PubMed  Google Scholar 

  • Rengel Z, Robinson DL (1990) Modeling magnesium uptake from an acid soil. II. Barber-Cushman model. Soil Sci Soc Am J 54:791–795

    CAS  Google Scholar 

  • Rennenberg H, Geßler A (1999) Consequences of N deposition to forest ecosystems — recent results and future research needs. Water Air Pollut 116:47–64

    Article  CAS  Google Scholar 

  • Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127:635–674

    Article  CAS  Google Scholar 

  • Robinson D, van Vuuren MMI (1998) Responses of wild plants to nutrient patches in relation to growth rate and life-form. In: Lambers H, Poorter H, van Vuuren MMI (eds) Inherent variation in plant growth: physiological mechanisms and ecological consequences. Backhuys, Leiden, pp 237–257

    Google Scholar 

  • Robinson D, Linehan DJ, Caul S (1991) What limits nitrate uptake from soil? Plant Cell Environ 14:77–85

    Article  CAS  Google Scholar 

  • Robinson D, Hodge A, Griffiths BS, Fitter AH (1999) Plant root proliferation in nitrogenrich patches confers competitive advantage. Proc R Soc Lond B 266:431–435

    Article  Google Scholar 

  • Rorison IH, Robinson D (1984) Calcium as an environmental variable. Plant Cell Environ 7:381–390

    Article  CAS  Google Scholar 

  • Rowell DL (1994) Soil science: methods and applications. Addison Wesley Longman, Harlow

    Google Scholar 

  • Scheible W-R, Lauerer M, Schulze E-D, Caboche M, Stitt M (1997) Accumulation of nitrate in the shoot acts as a signal to regulate shoot-root allocation in tobacco. Plant J 11:671–691

    Article  CAS  Google Scholar 

  • Schlesinger W (1997) Biogeochemistry, 2nd edn. Academic Press, London

    Google Scholar 

  • Seward P, Barraclough PB, Gregory PJ (1990) Modelling potassium uptake by wheat (Triticum aestivum) crops. Plant Soil 124:303–307

    Article  CAS  Google Scholar 

  • Smith FW, Hawkesford MJ, Ealing PM, Clarkson DT, Vanden Berg PJ, Belcher AR, Warrilow AGS (1997) Regulation of expression of a cDNA from barley roots encoding a high affinity sulphate transporter. Plant J 12:875–884

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Davies WJ (1992) Integration of hydraulic and chemical signalling in the control of stomatal conductance and water status of droughted plants. Plant Cell Environ 9:540–545

    Google Scholar 

  • Tillard P, Passama L, Gojon A (1998) Are phloem amino acids involved in the shoot to root control of NO3 uptake in Ricinus communis? J Exp Bot 49:1371–1379

    Article  CAS  Google Scholar 

  • Tinker PB, Nye PB (2000) Solute movement in the rhizosphere. Oxford University Press, Oxford

    Google Scholar 

  • van der Werf A, Nagel O (1996) Carbon allocation to shoot and roots in relation to nitrogen supply is mediated by cytokinins and sucrose. Plant Soil 185:21–32

    Article  Google Scholar 

  • van Vuuren MMI, Robinson D, Griffiths BS (1996) Nutrient inflow and root proliferation during the exploitation of a temporally and spatially discrete source of nitrogen in soil. Plant Soil 178:185–192

    Article  Google Scholar 

  • Wang T-B, Gassmann W, Rubio F, Schroeder JI, Glass ADM (1998) Rapid up-regulation of HKT1, a high-affinity potassium transporter gene, in roots of barley and wheat following withdrawal of potassium. Plant Physiol 118:651–659

    Article  PubMed  Google Scholar 

  • Watson MA (1986) Integrated physiological units in plants. Trends Ecol Evol 1:119–123

    Article  Google Scholar 

  • Yanai J, Linehan DJ, Robinson D, Young IM, Hackett CA, Kyuma K, Kosaki T (1996) Effects of inorganic nitrogen application on the dynamics of the soil solution composition in the root zone of maize. Plant Soil 180:1–9

    Article  CAS  Google Scholar 

  • Zhang H, Forde BG (1998) An Arabidopsis MADS box gene that controls nutrientinduced changes in root architecture. Science 279:407–409

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jennings A, Barlow PW, Forde BG (1999) Dual pathways for regulation of root branching by nitrate. Proc Natl Acad Sci USA 96:6529–6534

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robinson, D. (2005). Integrated Root Responses to Variations in Nutrient Supply. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_3

Download citation

Publish with us

Policies and ethics