Skip to main content

Effects of Soil Temperature on Nutrient Uptake

  • Chapter
Nutrient Acquisition by Plants

Part of the book series: Ecological Studies ((ECOLSTUD,volume 181))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addington RN, Seastedt (1999) Activity of soil microarthropods beneath snowpack in alpine tundra and subalpine forest. Pedobiologia 43:47–53

    Google Scholar 

  • Anderson RV, Coleman DC (1982) Nematode temperature responses: a niche dimension in populations of bacterial-feeding nematodes. J Nematol 14:69–76

    CAS  PubMed  Google Scholar 

  • Anderson RV, Coleman DC, Cole CV (1981) Effects of saprotrophic grazing on net mineralization. In: Clark FE, Rosswall T (eds) Terrestrial nitrogen cycles. Ecol Bull (Stockholm) 33:201–215

    Google Scholar 

  • Archibold OW, Ripley EA, Bretell DL (1996) Comparison of the microclimate of a small aspen grove and adjacent prairie in Saskatchewan. Am Midl Nat 136:248–261

    Article  Google Scholar 

  • Atkin RK, Barton GE, Robinson DK (1973) Effect of root-growing temperature on growth substances in xylem exudates of Zea mays. J Exp Bot 24:475–487

    Google Scholar 

  • Atkin OK, Edwards EJ, Loveys BR (2000) Response of root respiration to changes in temperature and its relevance to global warming. New Phytol 147:141–154

    Article  CAS  Google Scholar 

  • Badejo MA (1990) Seasonal abundance of soil mites (Acarina) in two contrasting environments. Biotropica 22:382–390

    Article  Google Scholar 

  • Barber SA, Mackay AD, Kuchenbuch RO, Barraclough PB (1989) Effects of soil temperature and water on maize root growth. Dev Plant Soil Sci 36:231–233

    Google Scholar 

  • BassiriRad H (2000) Kinetics of nutrient uptake by roots: responses to global change. New Phytol 147:155–169

    Article  CAS  Google Scholar 

  • BassiriRad H, Caldwell MM, Bilbrough C (1993) Effects of soil temperature and nitrogen status on kinetics of 15NO3 − uptake by roots of field-grown Agropyron desertorum (Fisch. ex Link) Schult. New Phytol 123:485–489

    Article  CAS  Google Scholar 

  • BassiriRad H, Tissue DT, Reynolds JF, Chapin FS III (1996) Response of Eriophorum vaginatum to CO2 enrichment at different soil temperatures: effects on growth, root respiration and PO4 3− uptake kinetics. New Phytol 133:423–430

    Article  CAS  Google Scholar 

  • Bennie ATP (1991) Growth and mechanical impedance. In:Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 393–414

    Google Scholar 

  • Bertrand A, Robitaille G, Nadeau P, Boutin R (1994) Effects of soil freezing and drought stress on abscisic acid content of sugar maple sap and leaves. Tree Physiol 14:413–425

    CAS  PubMed  Google Scholar 

  • Billings WD, Luken OJ, Mortensen DA, Peterson KM (1982) Arctic tundra: a source or sink for atmospheric carbon dioxide in a changing environment? Oecologia 53:7–11

    Article  Google Scholar 

  • Bird AF, De Ley P, Bird J (1993) Morphology, oviposition and embryogenesis in an Australian population of Acrobeloides nanus. J Nematol 25:607–615

    CAS  PubMed  Google Scholar 

  • Bliss LC (1988) Arctic tundra and polar desert biome. In: Barbour MG, Billings WD (eds) North American terrestrial vegetation. Cambridge University Press, Cambridge, pp 2–32

    Google Scholar 

  • Bonan GB, Van Cleve K (1991) Soil temperature, nitrogen mineralization, and carbon source-sink relationships in boreal forests. Can J For Res 22:629–639

    Google Scholar 

  • Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP (1998) Roots exert a strong influence on the temperature sensitivity of soil respiration. Nature 396:570–572

    Article  CAS  Google Scholar 

  • Bowden RD, Newkirk KM, Rullo GM (1998) Carbon dioxide and methane fluxes by a forest soil under laboratory-controlled moisture and temperature conditions. Soil Biol Biochem 30:1591–1597

    Article  CAS  Google Scholar 

  • Bowen GD (1991) Soil temperature, root growth, and plant function. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half. Marcel Dekker, New York, pp 309–330

    Google Scholar 

  • Brady NC (1990) The nature and properties of soils, 10th edn. MacMillan, New York

    Google Scholar 

  • Breshears DD, Nyhan JW, Heil CE, Wilcox BP (1998) Effects of woody plants on microclimate in a semiarid woodland: Soil temperature and evaporation in canopy and inter-canopy patches. Int J Plant Sci 159:101–1017

    Article  Google Scholar 

  • Bristow KL, Campbell GS, Papendick RI, Elliot LF (1986) Simulation of heat and moisture transfer through a surface residue-soil system. Agric For Meteorol 36:193–214

    Article  Google Scholar 

  • Brown TL, LeMay HE Jr (1981) Chemistry: the central science. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Brown SE, Pregitzer KS, Reed DD, Burton AJ (1999) Predicting daily mean soil temperature from daily mean air temperature in four northern hardwood forest stands. For Sci 46:297–301

    CAS  Google Scholar 

  • Burke IC (1989) Control of nitrogen mineralization in a sagebrush steppe landscape. Ecology 70:1115–1126

    Article  Google Scholar 

  • Cárcamo HA, Prescott CE, Chanway CP, Abe TA (2001) Do soil fauna increase rates of litter breakdown and nitrogen release in forests of British Columbia, Canada? Can J For Res 31:1195–1204

    Article  Google Scholar 

  • Carreiro MM, Koske RE (1992) Effect of temperature on decomposition and development of microfungal communities in leaf litter microcosms. Can J Bot 70:2177–2183

    Google Scholar 

  • Chapin FS III (1974a) Morphological and physiological mechanisms of temperature compensation in phosphate absorption along a latitudinal gradient. Ecology 55:1180–1198

    Article  CAS  Google Scholar 

  • Chapin FS III (1974b) Phosphate absorption capacity and acclimation potential in plants along a latitudinal gradient. Science 183:521–523

    CAS  PubMed  Google Scholar 

  • Chapin FS III, Van Cleve K, Chapin MC (1979) Soil temperature and nutrient cycling in the tussock growth form of Eriophorum vaginatum. J Ecol 67:169–189

    CAS  Google Scholar 

  • Chapin FS III, Van Cleve K, Tryon PR (1986) Relationship of ion absorption to growth rate in taiga trees. Oecologia 69:238–242

    Article  Google Scholar 

  • Clarkson DT (1985) Factors affecting mineral nutrient acquisition by plants. Annu Rev Plant Physiol 36:77–115

    Article  CAS  Google Scholar 

  • Clarkson DT (1996) Root structure and sites of ion uptake. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 483–510

    Google Scholar 

  • Clarkson DT, Earnshaw MJ, White PJ, Cooper HD (1988) Temperature dependent factors influencing nutrient uptake: an analysis of responses at different levels of organization. In: Long SP, Woodward FI (eds) Plants and temperature. Symp 42, Society for Experimental Biology, Cambridge, pp 281–330

    Google Scholar 

  • Colmer TD, Bloom AJ (1998) A comparison of NH4 + and NO3 − net fluxes along roots of rice and maize. Plant Cell Environ 21:240–246

    Article  CAS  Google Scholar 

  • Cooper AJ (1973) Root temperature and plant growth — a review. Res Rev no 4, Commonwealth Bureau of Horticulture and Plantation Crops, Commonwealth Agricultural Bureau, Farnham Royal, England

    Google Scholar 

  • Cortina J, Vallejo VR (1994) Effects of clearfelling on forest floor accumulation and litter decomposition in a Radiata pine plantation. For Ecol Manage 70:299–310

    Article  Google Scholar 

  • Coutts MP, Nicoll BC (1990) Growth and survival of shoots, roots, and mycorrhizal mycelium in clonal Sitka spruce during the first growing season after planting. Can J For Res 20:861–868

    Google Scholar 

  • Cubasch U, Meehl GA, Boer GJ, Stouffer RJ, Dix M, Noda A, Senior CA, Raper S, Yap KS (2001) Projections of future climate. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 525–582

    Google Scholar 

  • Daniel JN (1993) Biological fixation and transfer of nitrogen by trees in agroforestry systems. Range Manage Agrofor 14:185–194

    Google Scholar 

  • Day TA, Heckathorn SA, Delucia EH (1991) Limitations of photosynthesis in Pinus taeda L. (loblolly pine) at low soil temperatures. Plant Physiol 96:1246–1254

    PubMed  CAS  Google Scholar 

  • Dean-Drummond CE, Glass ADM (1983) Compensatory changes in ion fluxes into barely (Hordeum vulgare L. cv. Betzes) seedlings in response to differential root/shoot growth temperatures. J Exp Bot 34:1711–1719

    Google Scholar 

  • Delucia EH, Callaway RM, Thomas EM, Schlesinger WH (1997) Mechanisms of phosphorus acquisition for ponderosa pine seedlings under high CO2 and temperature. Ann Bot 79:111–120

    Article  CAS  Google Scholar 

  • Dodd JC, Jeffries P (1989) Effect of over-winter environmental conditions on vesicular-arbuscular mycorrhizal infection of autumn-sown cereals. Soil Biol Biochem 21:453–455

    Article  Google Scholar 

  • Domisch T, Finér L, Lehto T (2001) Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol 21:465–472

    CAS  PubMed  Google Scholar 

  • Dong S, Scagel CF, Cheng L, Fuchigami LH, Rygiewicz PT (2001) Soil temperature and plant growth stage influence nitrogen uptake and amino acid concentration of apple during early spring growth. Tree Physiol 21:541–547

    CAS  PubMed  Google Scholar 

  • Eissenstat DM (1992) Costs and benefits of constructing roots of small diameter. J Plant Nutr 15:763–782

    Google Scholar 

  • Ellert BH, Bettany JR (1992) Temperature dependence of net nitrogen and sulfur mineralization. Soil Soc Am J 56:1133–1141

    CAS  Google Scholar 

  • Farnsworth EJ, Nunez-Farfan J, Careaga SA, Bazzaz FA (1995) Phenology and growth of three temperate forest life forms in response to artificial soil warming. J Ecol 83:967–977

    Google Scholar 

  • Federer CA, Flynn LD, Martin CW, Hornbeck JW, Pierce RS (1990) Thirty years of hydrometeorologic data at the Hubbard Brook Experimental Forest, New Hampshire. USDA Forest Service, Radnor, PA, Gen Tech Rep NE-141

    Google Scholar 

  • Feng Y, Li X, Boersma L (1990) The Arrhenius equation as a model for explaining plant responses to temperature and water stresses. Ann Bot 66:237–244

    Google Scholar 

  • Fisk MC, Schmidt SK (1995) Nitrogen mineralization and microbial biomass nitrogen dynamics in three alpine tundra communities. Soil Sci Soc Am J 59:1036–1043

    Article  CAS  Google Scholar 

  • Fitter A (1996) Characteristics and functions of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 1–20

    Google Scholar 

  • Fitter AH, Graves JD, Self GK, Brown TK, Bogie DS, Taylor K (1998) Root production, turnover and respiration under two grassland types along an altitudinal gradient: influence of temperature and solar radiation. Oecologia 114:20–30

    Article  Google Scholar 

  • Forbes PJ, Black KE, Hooker JE (1997) Temperature-induced alteration to root longevity in Lolium perenne. Plant Soil 190:87–90

    Article  CAS  Google Scholar 

  • Geiger R (1965) The climate near the ground. Harvard University Press, Cambridge

    Google Scholar 

  • Glass ADM (1989) Plant nutrition: an introduction to current concepts. Jones and Bartlett, Boston

    Google Scholar 

  • Glass ADM, Siddiqui MY (1985) Nitrate inhibition of chloride influx in barley: implications for a proposed chloride homeostat. J Exp Bot 36:556–566

    CAS  Google Scholar 

  • GliÅ„ski J, Lipiec J (1990) Soil physical conditions and plant roots. CRC Press, Boca Raton

    Google Scholar 

  • Gosselin A, Trudel MJ (1986) Root-zone temperature effects on pepper. J Am Soc Hortic Sci 111:220–224

    Google Scholar 

  • Hall FG, Sellers PJ, Williams DI (1996) Initial results from the Boreal Ecosystem-Atmosphere Experiment, BOREAS. Silva Fenn 30:109–212

    Google Scholar 

  • Hanks RJ, Ashcroft GL (1980) Applied soil physics. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Hendrick RL, Pregitzer KS (1993) Patterns of fine root mortality in two sugar maple forests. Nature 361:59–61

    Article  Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic Press, San Diego

    Google Scholar 

  • Houghton RA, Skole DL (1990) Carbon. In: Turner BL, Clark WC, Kates RW, Richards JF, Mathews JT, Meyer WB (eds) The Earth as transformed by human action. Cambridge University Press, Cambridge, pp 393–408

    Google Scholar 

  • Isard SA, Schaetzl RJ (1995) Estimating soil temperatures and frost in the lake effect snowbelt region, Michigan, USA. Cold Reg Sci Tech 23:317–332

    Article  Google Scholar 

  • Janssens IA, Têtè Barigah S, Ceulemans R (1998) Soil CO2 efflux rates in different tropical vegetation types in French Guiana. Ann Sci For 55:671–680

    Google Scholar 

  • Joergensen RG, Brookes PC, Jenkinson DS (1990) Survival of the soil microbial biomass at elevated temperatures. Soil Biol Biochem 22:1129–1136

    Article  Google Scholar 

  • Johnson IR, Thornley JHM (1985) Temperature dependence of plant and crop processes. Ann Bot 55:1–24

    Google Scholar 

  • Joslin JD, Wolfe MH (1993) Temperature increase accelerates nitrate release from high-elevation red spruce soils. Can J For Res 23:756–759

    CAS  Google Scholar 

  • Jungk AO (1996) Dynamics of nutrient movement at the soil-root interface. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 529–556

    Google Scholar 

  • Jury WA, Gardner WR, Gardner WH (1991) Soil physics, 5th edn. Wiley, New York

    Google Scholar 

  • Kaspar TC, Bland WL (1992) Soil temperature and root growth. Soil Sci 154:290–299

    Google Scholar 

  • Kelly JM (1993) Temperature affects solution-phase nutrient concentrations and subsequent calculations of supply parameters. Soil Sci Soc Am J 57:527–531

    Article  CAS  Google Scholar 

  • King JS, Thomas RB, Strain BR (1996) Growth and carbon accumulation in root systems of Pinus taeda and Pinus ponderosa seedlings as affected by varying CO2, temperature and nitrogen. Tree Physiol 16:635–642

    PubMed  Google Scholar 

  • King JS, Pregitzer KS, Zak DR (1999) Clonal variation in above-and belowground growth responses of Populus tremuloides Michaux: influence of soil warming and nutrient availability. Plant Soil 217:119–130

    Article  Google Scholar 

  • Kirschbaum MU (1995) The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem 27:753–760

    Article  CAS  Google Scholar 

  • Kohnke H (1968) Soil physics. McGraw-Hill, New York

    Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic Press, San Diego

    Google Scholar 

  • Kuhns MR, Garret HE, Teskey RO, Hinckley TM (1985) Root growth of black walnut trees related to soil temperature, soil water potential, and leaf water potential. For Sci 31:617–629

    Google Scholar 

  • Landhäusser SM, Wein RW, Lange P (1996) Gas exchange and growth of three arctic tree-line tree species under different soil temperature and drought preconditioning regimes. Can J Bot 74:686–693

    Article  Google Scholar 

  • Larcher W (1995) Plant physiological ecology. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Leirós MC, Trasar-Cepeda C, Seoane S, Gil-Sotres F (1999) Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biol Biochem 31:327–335

    Article  Google Scholar 

  • Lhomme J-P, Troulfeau D, Monteny B, Chehbouni A, Bauduin S (1997) Sensible heat flux and radiometric surface temperature over sparse Sahelian vegetation II. A model for the kB −1 parameter. J Hydrol 188/189:839–854

    Article  Google Scholar 

  • Lieth H (1975) Modeling the primary productivity of the world. In: Lieth H, Whittaker RH (eds) Primary productivity of the biosphere. Springer, Berlin Heidelberg New York, pp 237–263

    Google Scholar 

  • Lipson DA, Näsholm T (2001) The unexpected versatility of plants: organic nitrogen use and availability in terrestrial ecosystems. Oecologia 128:305–316

    Article  Google Scholar 

  • Lipson DA, Schmidt SK, Monson RK (2000) Carbon availability and temperature control the post-snowmelt decline in alpine soil microbial biomass. Soil Biol Biochem 32:441–448

    Article  CAS  Google Scholar 

  • Londo AJ, Messina MG, Schoenholtz SH (1999) Forest harvesting effects on soil temperature, moisture, and respiration in a bottomland hardwood forest. Soil Sci Soc Am J 63:637–644

    Article  CAS  Google Scholar 

  • Lyr H, Hoffmann G (1967) Growth rates and growth periodicity of tree roots. Int Rev For Res 2:181–236

    Google Scholar 

  • MacDonald NW, Zak DR, Pregitzer KS (1995) Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Soc Am J 59:233–240

    CAS  Google Scholar 

  • MacDuff JH, Dhanoa MS (1990) N2 fixation and nitrate uptake by white clover swards in response to root temperature in flowing solution culture. Ann Bot 65:325–335

    Google Scholar 

  • MacDuff JH, Wild A (1989) Interactions between root temperature and nitrogen deficiency influence preferential uptake of NH4 + and NO3 − by oilseed rape. J Exp Bot 40:195–206

    CAS  Google Scholar 

  • MacDuff JH, Wild A, Hopper MJ, Dhanoa MS (1986) Effects of temperature on parameters of root growth relevant to nutrient uptake: measurements on oilseed rape and barley grown in flowing nutrient solution. Plant Soil 94:321–332

    Article  Google Scholar 

  • MacDuff JH, Gordon AJ, Ryle GJA, Powell CE (1989) White clover N2 fixation in response to root temperature and nitrate. J Exp Bot 40:517–526

    Google Scholar 

  • MacDuff JH, Jarvis SC, Cockburn JE (1994) Acclimation of NO3 − fluxes to low root temperature by Brassica napus in relation to NO3 − supply. J Exp Bot 45:1045–1056

    CAS  Google Scholar 

  • Mackay WP, Silva S, Lightfoot DC, Pagani MI, Whitford WG (1986) Effect of increased soil moisture and reduced soil temperature on a desert soil arthropod community. Am Midl Nat 116:45–56

    Article  Google Scholar 

  • Markhart AH, Fiscus EL, Naylor AW, Kramer PJ (1980) Low temperature acclimation of root fatty acid composition, leaf water potential, gas exchange and growth of soybean seedlings. Plant Cell Environ 3:435–441

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • McHale PJ, Mitchell MJ, Bowles FP (1998) Soil warming in a northern hardwood forest: trace gas fluxes and leaf litter decomposition. Can J For Res 28:1365–1372

    Article  Google Scholar 

  • McMichael BL, Burke JJ (1996) Temperature effects on root growth. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 383–396

    Google Scholar 

  • McMichael BL, Burke JJ (1998) Soil temperature and root growth. Hortic Sci 33:947–951

    Google Scholar 

  • Miyasaka SC, Grunes DL (1990) Root temperature and calcium level effects on winter wheat forage. I. Shoot and root growth. Agron J 82:236–242

    Google Scholar 

  • Näsholm T, Ekblad A, Nordin A, Giesler R, Högberg M, Högberg P (1998) Boreal forest plants take up organic nitrogen. Nature 392:914–916

    Article  Google Scholar 

  • Nichols DS (1998) Temperature of upland and peatland soils in a north central Minnesota forest. Can J Soil Sci 78:493–509

    Google Scholar 

  • Nissen P (1996) Uptake mechanisms. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 511–527

    Google Scholar 

  • Nobel PS (1989) Temperature, water availability, and nutrient levels at various soil depths-consequences for shallow-rooted desert succulents, including nurse plant effects. Am J Bot 76:1486–1492

    Article  Google Scholar 

  • Nobel PS, Linton MJ (1997) Frequencies, microclimate and root properties for three codominant perennials in the northwestern Sonoran desert on north-vs. south-facing slopes. Ann Bot 80:731–739

    Article  Google Scholar 

  • Odell RT, Dijkerman JC, van Vuure W, Melsted SW, Beavers AH, Sutton PM, Kurtz LT, Miedema R (1974) Characteristics, classification, and adaptation of soils in selected areas in Sierra Leone, West Africa. Agricultural Experiment Station, College of Agriculture, University of Illinois at Urbana-Champaign, Bull 748, and Njala University College, University of Sierra Leone, Bull 4

    Google Scholar 

  • Ogigirigi MA (1977) Climate of the Guinea and Sudan savannas of West Africa. In: Savanna aforestation in Africa. Food and Agriculture Organization of the United Nations, Rome, pp 9–19

    Google Scholar 

  • Olasantan FO (1999) Effect of time of mulching on soil temperature and moisture regime and emergence, growth and yield of white yam in western Nigeria. Soil Till Res 50:215–221

    Article  Google Scholar 

  • Olson JS (1963) Energy storage and the balance of producers and decomposers in ecological systems. Ecology 44:322–331

    Article  Google Scholar 

  • Osmond DL, Wilson RF, Raper CD Jr (1982) Fatty acid composition and nitrate uptake of soybean roots during acclimation to low temperature. Plant Physiol 70:1689–1693

    Article  CAS  PubMed  Google Scholar 

  • Paláez DV, Bóo RM, Elia OR (1992) Emergence and seedling survival of caldén in the semiarid region of Argentina. J Range Manage 45:564–568

    Google Scholar 

  • Paré D, Van Cleve K (1993) Soil nutrient availability and relationships with aboveground biomass production on postharvested upland white spruce sites in interior Alaska. Can J For Res 23:1223–1232

    Google Scholar 

  • Paterson DB, Mason WL (1999) Cultivation of soils for forestry. Forestry Commission Bull 119, Purely Print, Blandford Forum, Dorset

    Google Scholar 

  • Paul EA, Clark FE (1996) Soil microbiology and biochemistry, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Pelletier F, Prévost D, Laliberté, van Bochove E (1999) Seasonal response of denitrifiers to temperature in a Quebec cropped soil. Can J Soil Sci 79:551–556

    Google Scholar 

  • Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD (1994) Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecol Appl 4:617–625

    Google Scholar 

  • Powers RF (1990) Nitrogen mineralization along an altitudinal gradient: Interactions of soil temperature, moisture, and substrate quality. For Ecol Manage 30:19–29

    Article  Google Scholar 

  • Pregitzer KS, Hendrick RL, Fogel R (1993) The demography of fine roots in response to patches of water and nitrogen. New Phytol 125:575–580

    Article  Google Scholar 

  • Pregitzer KS, Kubiske ME, Yu CK, Hendrick RL (1997) Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia 111:302–308

    Article  Google Scholar 

  • Pregitzer KS, Laskowski MJ, Burton AJ, Lessard VC, Zak DR (1998) Variation in sugar maple root respiration with root diameter and soil depth. Tree Physiol 18:665–670

    PubMed  Google Scholar 

  • Pregitzer KS, King JS, Burton AJ, Brown SE (2000) Responses of tree fine roots to temperature. New Phytol 147:105–115

    Article  CAS  Google Scholar 

  • Reddell P, Bowen GD, Robson AD (1985) The effects of soil temperature on nodulation and nitrogen fixation in Casuarina cunninghamiana. New Phytol 101:441–450

    Article  CAS  Google Scholar 

  • Rendig VV, Taylor HM (1989) Principles of soil-plant interrelationships. McGraw-Hill, New York

    Google Scholar 

  • Richards PW (1998) The tropical rainforest, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosenzweig C, Hillel D (2000) Soils and global climate change: challenges and opportunities. Soil Sci 165:47–56

    Article  CAS  Google Scholar 

  • Ross DJ, Kelliher FM, Tate KR (1999) Microbial processes in relation to carbon, nitrogen and temperature regimes in litter and a sandy mineral soil from a central Siberian Pinus sylvestris L. forest. Soil Biol Biochem 31:757–767

    Article  CAS  Google Scholar 

  • Roundy BA, Biedenbender SH (1996) Germination of warm-season grasses under constant and dynamic temperatures. J Range Manage 49:425–431

    Google Scholar 

  • Ruark GA (1993) Modeling soil temperature effects on in situ decomposition rates of fine roots of loblolly pine. For Sci 39:118–129

    Google Scholar 

  • Russell CA, Voroney RP (1998) Carbon dioxide efflux from the floor of a boreal aspen forest. I. Relationship to environmental variables and estimates of C respired. Can J Soil Sci 78:301–310

    Google Scholar 

  • Rustad LE, Fernandez IJ (1998) Soil warming: consequences for foliar litter decay in a spruce-fir forest in Maine, USA. Soil Sci Am J 62:1072–1080

    CAS  Google Scholar 

  • Sanchez PA (1976) Properties and management of soils in the tropics. Wiley, New York

    Google Scholar 

  • Scanlon BR (1994) Water and heat fluxes in desert soils. 1. Field studies. Water Resour Res 30:709–719

    Article  Google Scholar 

  • Scharpenseel HW, Schomaker M, Ayoub A (eds) (1990) Soils on a warmer earth: Effects of expected climate change on soil processes, with emphasis on the tropics and subtropics. Elsevier, Amsterdam

    Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry: an analysis of global change, 2nd edn. Academic Press, San Diego

    Google Scholar 

  • Schmidt IK, Jonasson S, Michelsen A (1999) Mineralization and microbial immobilization of N and P in arctic soils in relation to season, temperature and nutrient amendment. Appl Soil Ecol 11:147–160

    Article  Google Scholar 

  • Schwarz PA, Fahey TJ, Dawson TE (1997) Seasonal air and soil temperature effects on photosynthesis in red spruce (Picea rubens) saplings. Tree Physiol 17:187–194

    PubMed  Google Scholar 

  • Shouten AJ, van Esbroek MLP, Alkemade JRM (1998) Dynamics and stratification of functional groups of nematodes in the organic layer of a Scots pine forest in relation to temperature and moisture. Biol Fertil Soils 26:293–304

    Article  Google Scholar 

  • Smith WO, Byers HG (1938) The thermal conductivity of dry soil of certain of the great soil groups. Soil Sci Soc Am Proc 3:13–19

    CAS  Google Scholar 

  • Sohlenius B (1968) Influence of microorganisms and temperature upon some rhabditid nematodes. Pedobiologia 8:137–145

    Google Scholar 

  • Sohlenius B (1973) Growth and reproduction of a nematode Acrobeloides sp. cultivated on agar. Oikos 24:64–72

    Google Scholar 

  • Sohlenius B (1985) Influence of climatic conditions on nematode co-existence: a laboratory experiment with coniferous forest soil. Oikos 44:430–438

    Google Scholar 

  • Soil Survey Staff (1975) Soil taxonomy: a basic system of soil classification for making and interpreting soil surveys. USDA Soil Conservation Service, Washington, DC

    Google Scholar 

  • Sparks DL (1995) Environmental soil chemistry. Academic Press, San Diego

    Google Scholar 

  • Spittlehouse DL, Stathers RJ (1990) Seedling microclimate. British Columbia Ministry of Forests, Victoria, Land Management Rep no 65

    Google Scholar 

  • Sposito G (1994) Chemical equilibria and kinetics in soils. Oxford University Press, New York

    Google Scholar 

  • Stadler D, Wunderli H, Auckenthaler A, Flühler H (1996) Measurement of frost-induced snowmelt runoff in a forest soil. Hydrol Proc 10:1293–1304

    Article  Google Scholar 

  • Stark JM, Firestone MK (1996) Kinetic characteristics of ammonium-oxidizer communities in a California oak woodland-annual grassland. Soil Biol Biochem 28:1307–1317

    Article  CAS  Google Scholar 

  • Stoneman GL, Dell B, Turner NC (1995) Growth of Eucalyptus marginata (Jarrah) seedlings in Mediterranean-climate forest in south-west Australia in response to overstorey, site and fertiliser application. For Ecol Manage 79:173–184

    Article  Google Scholar 

  • Strahler AN, Strahler AH (1983) Modern physical geography, 2nd edn. Wiley, New York

    Google Scholar 

  • Sumrall LB, Roundy BA, Cox JR, Winkel VK (1991) Influence of canopy removal by burning or clipping on emergence of Eragrostis lehmanniana seedlings. Int J Wildland Fire 1:35–40

    Article  Google Scholar 

  • Sutinen M-L, Ritari A, Holappa T, Kujala K (1998) Seasonal changes in soil temperature and in the frost hardiness of Scots pine (Pinus sylvestris) roots under subarctic conditions. Can J For Res 28:946–950

    Article  Google Scholar 

  • Svenning MM, MacDuff JH (1996) Low root temperature retardation of the mineral nitrogen induced decline in N2 fixation by a northern ecotype of white clover. Ann Bot 77:615–621

    Article  CAS  Google Scholar 

  • Swift LW, Elliot KJ, Ottmar RD, Vihnanek RE (1993) Site preparation burning to improve southern Appalachian pine-hardwood stands: fire characteristics and soil erosion, moisture, and temperature. Can J For Res 23:2242–2254

    Google Scholar 

  • Sword MA, Brissette JC (1993) Effect of root zone temperature and water availability on shortleaf pine lateral root morphology. In: Brissette JC (ed) Proc 7th Biennial Southern Silvicultural Research Conf, USDA Forest Service, Southern Forest Experiment Station, New Orleans, pp 377–382

    Google Scholar 

  • Taiz L, Zeiger E (1991) Plant physiology. Benjamin/Cummings, New York

    Google Scholar 

  • Tajchman SJ, Minton CM (1986) Soil temperature regime in a forested Appalachian watershed. Can J For Res 16:624–629

    Google Scholar 

  • Taniguchi M, Williamson DR, Peck AJ (1998) Estimations of surface temperature and subsurface heat flux following forest removal in the south-west of Western Australia. Hydrol Proc 12:2205–2216

    Article  Google Scholar 

  • Teskey RO, Hinckley TM (1981) Influence of temperature and water potential on root growth of white oak. Physiol Plant 52:363–369

    Article  Google Scholar 

  • Thompson LJ, Naeem S (1996) The effects of soil warming on plant recruitment. Plant Soil 182:339–343

    CAS  Google Scholar 

  • Tinker PB, Nye PH (2000) Solute movement in the rhizosphere. Oxford University Press, New York

    Google Scholar 

  • Tisdale SL, Nelson WL (1975) Soil fertility and fertilizers, 3rd edn. MacMillan, New York

    Google Scholar 

  • Toselli M, Flore JA, Marangoni B, Masia A (1999) Effects of root-zone temperature on nitrogen accumulation by non-bearing apple trees. J Hortic Sci Biotech 74:118–124

    Google Scholar 

  • Tryon PR, Chapin FS III (1983) Temperature control over root growth and root biomass in taiga forest trees. Can J For Res 13:827–833

    Google Scholar 

  • Van Cleve K, Barney R, Schlentner R (1981) Evidence of temperature control of production and nutrient cycling in two interior Alaska black spruce ecosystems. Can J For Res 11:258–273

    Google Scholar 

  • Van Cleve K, Oechel WC, Hom JL (1990) Response of black spruce (Picea mariana) ecosystems to soil temperature modification in interior Alaska. Can J For Res 20:1530–1535

    Google Scholar 

  • Van Cleve K, Yarie J, Erickson R, Dyrness CT (1993) Nitrogen mineralization and nitrification in successional ecosystems on the Tanana River floodplain, interior Alaska. Can J For Res 23:970–978

    Google Scholar 

  • Viereck LA, Van Cleve K, Adams PC, Schlentner RE (1993) Climate of the Tanana river floodplain near Fairbanks, Alaska. Can J For Res 23:899–913

    Google Scholar 

  • Wan X, Zwiazek JJ, Lieffers VJ, Landhausser M (2001) Hydraulic conductance in aspen (Populus tremuloides) seedlings exposed to low root temperatures. Tree Physiol 21:691–696

    CAS  PubMed  Google Scholar 

  • Wardle DA (1998) Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol Biochem 30:1627–1637

    Article  CAS  Google Scholar 

  • Weast RC (1978) CRC handbook of chemistry and physics, 58th edn. CRC Press, West Palm Beach

    Google Scholar 

  • Weber MG, McAlpine RS, Wotton BM, Donnelly JG, Hobbs MW (1995) Prescribed burning and disk trenching effects on early plantation performance in eastern Ontario, Canada. For Ecol Manage 78:159–171

    Article  Google Scholar 

  • Weih M, Karlsson PS (1999) The nitrogen economy of mountain birch seedlings: implications for winter survival. J Ecol 87:211–219

    Article  Google Scholar 

  • White PJ, Cooke DT, Earnshaw J, Clarkson DT, Burden RS (1990) Does plant growth temperature modulate the membrane composition and ATPase activities of tonoplast and plasma-membrane fractions from rye roots? Phytochemistry 29:3385–3393

    Article  CAS  Google Scholar 

  • Williams M, Rastetter EB (1999) Vegetation characteristics and primary productivity along an arctic transect: implications for scaling-up. J Ecol 87:885–898

    Article  Google Scholar 

  • Wilson JM, Tommerup IC (1992) Interactions between fungal symbionts: VA mycorrhizae. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant-fungal process. Chapman & Hall, New York, pp 199–248

    Google Scholar 

  • Wilson CA, Mitchell RJ, Hendricks JJ, Boring LR (1999) Patterns and controls of ecosystem function in longleaf pine-wiregrass savannas. II. Nitrogen dynamics. Can J For Res 29:752–760

    Article  Google Scholar 

  • Wong-Chong GM, Loehr RC (1978) Kinetics of microbial nitrite nitrogen oxidation. Water Res 12:605–609

    Article  CAS  Google Scholar 

  • Woodward A (1998) Relationships among environmental variables and distribution of tree species at high elevation in the Olympic mountains. Northwest Sci 72:10–22

    Google Scholar 

  • Zak DR, Pregitzer KS, Curtis PS, Teeri JA, Fogel R, Randlett DL (1993) Elevated atmospheric CO2 and feedback between carbon and nitrogen cycles. Plant Soil 151:105–117

    CAS  Google Scholar 

  • Zak DR, Holmes WE, MacDonald NW, Pregitzer KS (1999) Soil temperature, matric potential, and the kinetics of microbial respiration and nitrogen mineralization. Soil Sci Am J 63:575–584

    CAS  Google Scholar 

  • Zogg GP, Zak DR, Ringelberg DB, MacDonald NW, Pregitzer KS, White DC (1997) Compositional and functional shifts in microbial communities due to soil warming. Soil Sci Soc Am J 61:475–481

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pregitzer, K., King, J. (2005). Effects of Soil Temperature on Nutrient Uptake. In: BassiriRad, H. (eds) Nutrient Acquisition by Plants. Ecological Studies, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27675-0_10

Download citation

Publish with us

Policies and ethics