Skip to main content

Calcifying extracellular mucus substances (EMS) of Madrepora oculata — a first geobiological approach

  • Chapter
Cold-Water Corals and Ecosystems

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

Colonial non-zooxanthellate corals from deep-water coral reefs, Lophelia pertusa and Madrepora oculata, produce large amounts of extracellular mucus (EMS). This mucus has various functions, e.g., an antifouling capability protecting the coral skeleton from attacks of endolithic and boring organisms. Both corals show thick epithecal and exothecal skeletal parts with a clear lamellar growth pattern. The formation of the epitheca is unclear. It is supposed that the EMS play a central role during the calcification process of the epithecal skeletal parts. Staining with the fluorochrome tetracycline has shown an enrichment of Ca2+ ions in the mucus. In order to investigate this hypothesis, the protein content of the mucus and the intracrystalline organic matter from newly formed epithecal aragonite of Madrepora oculata was determined via sodium dodecyl sulfate (SDS) gel electrophoresis. Identical band patterns within both substances could be detected, one around 45 kDa molecular weight and a cluster around 30–35 kDa molecular weight. The occurrence of identical protein patterns within the mucus and in the newly formed aragonite confirms the idea that the mucus plays an important role during the organomineralization of the coral epitheca.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralisation. Proc Natl Acad Sci USA 82: 4110–4114

    Google Scholar 

  • Addadi L, Weiner S (1992) Kontroll-und Designprinzipien bei der Biomineralisation. Angew Chem 104: 159–176

    Google Scholar 

  • Allemand D, Tambutté È, Girard J-P, Jaubert J (2001) Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. J Exp Biol: 201: 2001–2009

    Google Scholar 

  • Arp G, Reimer A, Reitner J (2003) Microbialite formation in seawater of increased alkalinity, Satonda Crater Lake, Indonesia. J Sediment Res 73: 105–127

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    Article  Google Scholar 

  • Bryan W, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the Hexacorals. Proc R Soc Queensland 52: 78–91

    Google Scholar 

  • Constantz BR (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1: 152–157

    Google Scholar 

  • Constantz BR, Meike A (1989) Calcite centres of calcification in Mussa angulosa (Scleractinia). In: Crick RE (ed) Origin, Evolution and modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York, pp 201–207

    Google Scholar 

  • Constantz BR, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248: 253–258

    Article  Google Scholar 

  • Cuif J-P, Dauphin Y (1998) Microstructural and physico-chemical characterization of “centers of calcification” in septa of some Recent scleractinian corals. Paläont Z 72: 257–270

    Google Scholar 

  • Cuif J-P, Dauphin Y, Denis A, Gautret P (1996) The organomineral structure of coral skeletons: a potential source of new criteria for scleractinian taxonomy. Bull Inst Océanogr Monaco Spec Issue 14: 359–367

    Google Scholar 

  • Cuif J-P, Dauphin Y, Gautret P (1999) Compositional diversity of soluble mineralizing matrices in some recent coral skeletons compared to fine-scale growth structures of fibres: discussion of consequences for biomineralization and diagenesis. Int J Earth Sci 88: 582–592

    Article  Google Scholar 

  • Cuif J-P, Gautret P (1995) Gluides et proteins de la matrice soluble des biocristaux de scleractiniaires acroporides. CR Acad Sci Paris 320 Ser IIa: 273–278

    Google Scholar 

  • Dauphin Y, Cuif J-P (1997) Isoelectric properties of the soluble matrices in relation to the chemical composition of some scleractinian skeletons. Electrophoresis 18: 1180–1183

    Article  Google Scholar 

  • Defarge C, Trichet J (1995) From biominerals to “organominerals”: the example of the modern lacustrine calcareous stromatolites from Polynesian atolls. Bull Inst Océanogr Monaco Spec Issue 14: 265–271

    Google Scholar 

  • Freiwald A, Wilson JB (1998) Taphonomy of modern deep, cold-temperate water coral reefs. Hist Biol 13: 37–52

    Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund. SEPM Spec Publ 56: 141–161

    Google Scholar 

  • Freiwald A, Hühnerbach V, Lindberg B, Wilson JB, Campbell J (2002) The Sula Reef Complex, Norwegian Shelf. Facies 47: 179–200

    Google Scholar 

  • Gautret P, Cuif, J-P, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36: 189–194

    Google Scholar 

  • Gladfelter EH (1984) Skeletal development in Acropora cervicornis. A comparison of monthly rates of linear extension and calcium carbonate accretion measured over a year. Coral Reefs 3: 51–57

    Article  Google Scholar 

  • Goreau T (1956) Histochemistry of mucopolysaccharide-like substances and alkaline phosphatase in Madreporaria. Nature 177: 1029–1030

    Google Scholar 

  • Gunthorpe ME, Sikes CS, Wheeler AP (1990) Promotion and inhibition of calcium carbonate crystallization in vitro by matrix protein from blue crab exoskeleton. Biol Bull 179: 191–200

    Google Scholar 

  • Johnston I (1980) The ultrastructure of skeletogenesis in hermatypic corals. Int Rev Cyt 67: 171–214

    Article  Google Scholar 

  • Lange R, Bergbauer M, Szewzyk U, Reitner J (2001) Soluble proteins control growth of skeleton crystals in three coralline demosponges. Facies 45: 195–202

    Google Scholar 

  • Milliman JD (1974) Marine carbonates. In: Milliman JD, Müller G, Förstner U (eds) Recent sedimentary Carbonates. Springer, Berlin

    Google Scholar 

  • Mitterer RM (1978) Amino acid composition and metal binding capability of the skeletal protein of corals. Bull Mar Sci 28: 173–180

    Google Scholar 

  • Reitner J (1993) Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia). Formation and concepts. Facies 29: 3–39

    Google Scholar 

  • Reitner J, Hoffmann F (2003) Schwämme in Kaltwasser-Korallenriffen. Kleine Senckenberg-Reihe 45: 75–87

    Google Scholar 

  • Reitner J, Gautret P, Marin F, Neuweiler F (1995) Automicrites in a modern marine microbialite. Formation model via organic matrices (Lizard Island, Great Barrier Reef, Australia). Bull Inst Océanogr Monaco Spec Issue 14: 237–263

    Google Scholar 

  • Reitner J, Wörheide G, Lange R, Schumann-Kindel G (2001) Coralline demosponges — a geobiological portait. Bull Tohoku Univ Mus 1: 219–235

    Google Scholar 

  • Stolarski J (2003) Three-dimensional micro-and nanostructural characteristics of the scleractinian coral skeleton: a biocalcification proxy. Acta Palaeontol Pol 48: 497–530

    Google Scholar 

  • Trichet J, Defarge C (1995) Non-biologically supported organomineralisation. Bull Inst Océanogr Monaco Spec Issue 14: 203–236

    Google Scholar 

  • Weiner S, Traub W, Lowenstam HA (1983) Organic matrix in calcified exoskeletons. In: Westbroek P, de Jong EW (eds) Biomineralization and Biological Metal Accumulation. Reidel, Amsterdam, pp 205–224

    Google Scholar 

  • Wheeler AP, George JW, Evans CA (1981) Control of calcium carbonate nucleation and crystal growth by soluble matrix of oyster shell. Science 212: 1397–1398

    Google Scholar 

  • Wilbur KM, Simkiss K (1979) Carbonate turnover and depostion by Metazoa. In: Trudinger PA, Swaine DJ (eds) Studies in Environmental Sciences. Biochemical Cycling of Mineral-forming Elements. Elsevier, Amsterdam, pp 69–106

    Google Scholar 

  • Wörheide G, Gautret P, Reitner J, Böhm F, Joachimski MM, Thiel V, Michaelis W, Massault M (1997) Basal skeletal formation, role and preservation of intracrystalline organic matrices, and isotopic record in the coralline sponge Astrosclera willeyana Lister, 1900. Bol R Soc Esp Hist Nat (Sec Geol) 91: 355–374

    Google Scholar 

  • Young SD (1971) Organic material from scleractinian coral skeleton. 1. Variation in composition between several species. Cop Biochem Physiol 40B: 113–120

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Reitner, J. (2005). Calcifying extracellular mucus substances (EMS) of Madrepora oculata — a first geobiological approach. In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_38

Download citation

Publish with us

Policies and ethics