Skip to main content

Azooxanthellate corals in the Late Maastrichtian - Early Paleocene of the Danish basin: bryozoan and coral mounds in a boreal shelf setting

  • Chapter
Cold-Water Corals and Ecosystems

Part of the book series: Erlangen Earth Conference Series ((ERLANGEN))

Abstract

The Late Cretaceous-Danian of the northwest European shelf represents one of the largest and longest-lived cool-water carbonate shelves in the stratigraphic record. The palaeolatitude of the Danish basin was 45°N during that time. The heterozoan faunas are dominated by bryozoans, echinoids, molluscs, brachiopods, serpulids, and, to varying degree, by azooxanthellate corals. During the Late Maastrichtian, rare soft-substrate-dwelling solitary scleractinians occur, including Parasmilia cylindrical, P. excavata, Caryophyllia sp. as well as octocorals, especially Moltkia minuta. Contemporaneous bryozoan mound complexes below the photic zone, which provided hard substrates for the settlement of larvae, were not colonized by azooxanthellate corals.

Neither environmental nor faunal changes among the corals across the Cretaceous-Tertiary (K/T) boundary were significant. After the K/T boundary, the first solitary corals (moulds of Parasmilia biseriata, P. cincta, Trochocyathus hemisphaericus, Caryophyllia sp.) and octocorals appeared in the Cerithium Limestone, which lies above the Fish Clay. Similar to their Late Maastrichtian counterparts, these corals formed level-bottom communities.

The Early Danian post-Cerithium Limestone represents the peak of bryozoan mound development. Corals are present but rare. The Middle Danian is characterized by reduced bryozoan mound growth and by the mound-forming dendroid scleractinians Dendrophyllia candelabrum, Oculina becki and Faksephyllia faxoensis, which flourished predominantely in the vicinity of the Ringkøbing-Fyn High. Nine species of solitary scleractinians, stylasterinid hydrocorals, and octocorals contributed to reef building. Important criteria for the interpretation of “cold and deep-water coral bioherms” are (1) absence of algae, (2) low-diverse azooxanthellate coral communities, (3) dominance of dendroid growth forms in the corals, (4) surrounding pelagic sediment adjacent to the coral mounds, (5) occurrence of pelagic organisms (globigerinid foraminifers, coccoliths) in the lime mud, (6) breakdown of coral colonies predominantly by bioerosion instead of mechanical destruction waves, (7) mound- or bank-like morphology of the buildups and (8) occurrence at a high palaeolatitude.

Mound morphology and growth direction were traced by variations in the abundance of colonial corals. Gross morphology of scleractinian corals, stylasterinid hydrocorals and octocorals suggests an azooxanthellate character of the reefbuilders: the scleractinians developed dendroid growth forms, while stylasterinids and octocorals formed fan-like colonies oriented perpendicular to the nutrient-rich currents. Strong bioerosion was responsible for the breakdown of the skeletons, and the resulting bioclasts formed the substrate for larvae.

Modern azooxanthellate Oculina coral reefs along the shelf edge off central eastern Florida, USA show similarities in position, morphology, environment, water depth and current orientation with the coral mounds of the Paleocene and suggest a palaeodepth for the counterparts from the Danish basin of 100-300 m.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan JRP, Wells JW (1962) Holocene coral banks and subsidence in the Niger Delta. J Geol 70: 381–397

    Google Scholar 

  • Alvarez LW, Alvarez W, Asaro F, Michel HV (1980) Extraterrestrial cause for the Cretaceous-Tertiary extinction. Science 208: 4448

    Google Scholar 

  • Asgaard U (1968) Brachiopod palaeoecology in the Middle Danian limestone at Fakse, Denmark. Lethaia 1: 103–121

    Google Scholar 

  • Bernecker M, Weidlich O (1990) The Danian (Paleocene) Coral Limestone of Fakse, Denmark: a model for ancient aphotic, azooxanthellate coral mounds. Facies 22: 103–138

    Google Scholar 

  • Bromley RG (1967) Some observations on burrows of thalassinidean Crustacea in chalk hardgrounds. Quart J Geol Soc London 123: 157–182

    Article  Google Scholar 

  • Buhl-Mortensen L, Mortensen PB (2004) Symbiosis in deep-water corals. Symbiosis 37: 33–61

    Google Scholar 

  • Cairns SD (1983) Antarctic and subantarctic Stylasterina (Coelenterata: Hydrozoa). Antarct Res Ser 38: 61–64

    Google Scholar 

  • Cheetham AH (1971) Functional morphology and biofacies distribution of cheilostome Bryozoa in the Danian Stage (Paleocene) of southern Scandinavia. Smithsonian Contr Paleobiol 6: 1–87

    Google Scholar 

  • Christensen L, Fregerslev S, Simonsen A, Thiede J (1973) Sedimentology and depositional environment of Lower Danian fish clay from Stevns Klint, Denmark. Bull Geol Denmark 22: 193–212

    Google Scholar 

  • Dons C (1944) Norges korallrev. K norske Vidensk Selsk Forh 16: 37–82

    Google Scholar 

  • Dullo W-Chr, Süssmeier G, Tietz GF (1984) Diversity and distributional patterns of reef building scleractinians in recent lagoonal patch reefs on the coast of Kenya. Facies 16: 1–10

    Google Scholar 

  • Fischer-Benzon R (1866) Über das relative Alter des Faxekalkes und die in demselben vorkommenden Anomuren und Brachyuren. Schwer’sche Buchhandlung, Kiel

    Google Scholar 

  • Floris S (1972) Scleractinian corals from the Upper Cretaceous and Lower Tertiary of Nugssuaq, West Greenland. Medd Gronland, Komm Vidensk unders Gronland 196: 4–132

    Google Scholar 

  • Floris S (1979) Guide to Fakse Limestone Quarry. In: Birkelund T, Bromley RG (eds) Cretaceous — Tertiary Boundary Events, 1. The Maastrichtian and Danian of Denmark, pp 152–163

    Google Scholar 

  • Floris s (1980) The coral banks of the Danian of Denmark: Acta Palaeontol Pol 25: 531–540

    Google Scholar 

  • Flügel E, Kiessling W (2002) Patterns of Phanerozoic reef crisis. In: Kiessling W, Flügel E, Golonka J (eds) Phanerozoic Reef Patterns. SEPM Spec Publ 72: 691–733

    Google Scholar 

  • Freiwald A, Henrich R, Pätzold J (1997) Anatomy of a deep-water coral reef mound from Stjernsund, West Finnmark, northern Norway. SEPM Spec Publ 56: 141–162

    Google Scholar 

  • Fricke HW, Hottinger L (1983) Coral bioherms below the euphotic zone in the Red Sea. Mar Ecol Prog Ser 11: 113–117

    Google Scholar 

  • Golonka J, Ross MI, Scotese CR (1994) Phanerozoic paleogeographic and paleoclimatic maps. In: Embry AF, Beauchamp B, Glass DJ (eds) Pangea: global environments and resources. Canad Soc Petrol Geol Mem 17: 1–47

    Google Scholar 

  • Grasshoff M, Zibrowius H (1983) Kalkkrusten auf Achsen von Hornkorallen, rezent und fossil. Senckenb marit 15: 111–145

    Google Scholar 

  • Gruvel M (1923) Quelques gisements de coraux sur la cote occidentale du Maroc: C R Acad Sci 176: 1637

    Google Scholar 

  • Håkansson E, Thomsen E (1999) Benthic extinction and recovery patterns at the K/T boundary in shallow water carbonates, Denmark. Palaeogeogr Palaeoclimatol Palaeoecol 154: 67–85

    Google Scholar 

  • Heinberg C (1999) Lower Danian bivalves, Stevns Klint, Denmark: continuity across the K/T boundary. Palaeogeogr Palaeoclimatol Palaeoecol 154: 87–106

    Article  Google Scholar 

  • Henrich R, Hartmann M, Reitner J, Schäfer P, Freiwald A, Steinmetz S, Dietrich P, Thiede J (1992) Facies belts and communities of the arctic Vesterisbanken Seamount (central Greenland Sea). Facies: 27: 71–104

    Google Scholar 

  • Holbourn A, Kuhnt W, James NP (2002) Late Pleistocene bryozoan reef mounds of the Great Australian Bight: Isotope stratigraphy and benthic foraminiferal record. Paleoceanography 17: 1–13

    Article  Google Scholar 

  • James NP (1997) The cool-water carbonate depositional realm. SEPM Spec Publ 56: 1–20

    Google Scholar 

  • James NP, Feary DA, Surlyk F, Simo JA, Betzler C, Holbourn AE, Li Q, Matsuda H, Machiyama H, Brooks GR, Andres MS, Hine AC, Malone MJ (2000) Quaternary bryozoan reef mounds in cool-water, upper slope environments: Great Australian Bight. Geology 28: 647–650

    Article  Google Scholar 

  • Kastner M, Asaro F, Michel HV, Alvarez W, Alvarez LW (1984) The precursor of the Cretaceous-Tertiary boundary clays at Stevns Klint, and DSDP hole 465A. Science 226: 137–143

    Google Scholar 

  • Koenig CC, Coleman FC, Grimes CB, Fitzhugh GR, Scanlon KM, Gledhill CT, Grace M (2000) Protection of fish spawning habitat for the conservation of warm-temperate reef-fish fisheries on shelf-edge reefs of Florida. Bull Mar Sci 66: 593–616

    Google Scholar 

  • LeDanois E (1948) Le profondeurs de la mer. Payot, Paris

    Google Scholar 

  • Lees A (1975) Possible influences of salinity and temperature on modern shelf carbonate sedimentation. Mar Geol 19: 159–198

    Article  Google Scholar 

  • Malakoff D (2003) Cool corals become hot topic. Science 299: 195

    Google Scholar 

  • Macintyre IG, Milliman JD (1970) Physiographic features on the outer shelf and upper continental slope, Atlantic continental margin, southeastern United States. Bull Amer Geol Soc 81: 2577–2598

    Google Scholar 

  • Messing CG, Neumann AC, Lang JC (1990) Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios 5: 15–33

    Google Scholar 

  • Nelson CS (1988) An introductory perspective on non-tropical shelf carbonates. Sediment Geol 60: 3–12

    Google Scholar 

  • Nielsen BK (1913) Crinoiderne i Danmarks kridtaflejringer. Danmark geol Unders 26: 1–120

    Google Scholar 

  • Nielsen BK (1917) Cerithiumkalken in Stevns Klint. Medd Dansk geol Foren 5: 3–14

    Google Scholar 

  • Nielsen BK (1919) En Hydrocoralfauna fra Faxe. Medd Dansk geol Foren 5: 1–65

    Google Scholar 

  • Nielsen BK (1922) Zoantharia from Senone and Paleocene Deposits in Denmark and Skaane. K Dansk Vidensk Selsk Skr, Natv Math 3: 202–233

    Google Scholar 

  • Reed JK (1980) Distribution and structure of deep-water Oculina varicosa coral reefs off central eastern Florida. Bull Mar Sci 30: 667–677

    Google Scholar 

  • Reed JK (1981) In situ growth rates of the scleractinian coral Oculina varicosa occurring with zooxanthellae on 6-m reefs and without on 80-m banks. Proc 4th Int Coral Reef Symp 2: 201–206

    Google Scholar 

  • Reed JK (1982) Community composition, structure areal and trophic relationship of decapods associated with shallow-and deep-water Oculina varicosa coral reefs. Bull Mar Sci 32: 761–786

    Google Scholar 

  • Reed JK (2002a) Deep-water Oculina coral reefs of Florida: biology, impacts, and management. Hydrobiologia 471: 43–55

    Google Scholar 

  • Reed JK (2002b) Comparison of deep-water coral reefs and lithoherms off southeastern USA. Hydrobiologia 471: 57–69

    Google Scholar 

  • Reed JK, Mikkelsen PM (1987) The molluscan community associated with the scleractinian coral Oculina varicosa. Bull Mar Sci 40: 99–131

    Google Scholar 

  • Rosenkrantz A (1939) Faunaen i Cerithiumkalken og det haerdnede Skrivekridt i Stevns Klint. Medd Dansk geol Foren 9: 509–514

    Google Scholar 

  • Schlager W (2000) Sedimentation rates and growth potential of tropical, cool-water and mud-mound carbonate systems. Geol Soc London Spec Publ 178: 217–227

    Article  Google Scholar 

  • Smit J (1999) The global stratigraphy of the Cretaceous-Tertiary boundary impact ejecta. Annu Rev Earth Planet Sci 27: 75–113

    Article  Google Scholar 

  • Surlyk F (1974) Life habit, feeding mechanism and population structure of the Cretaceous brachiopod genus Aemula. Palaeogeogr Palaeoclimatol Palaeoecol 15: 185–203

    Article  Google Scholar 

  • Surlyk F (1997) A cool-water carbonate ramp with bryozoan mounds: Late Cretaceous-Danian of the Danish Basin. SEPM Spec Publ 56: 293–307

    Google Scholar 

  • Surlyk F, Håkansson E (1999) Maastrichtian and Danian strata in the southeastern part of the Danish Basin. In: Pedersen GK, Clemmensen LB (eds) 19th Reg Europ Meet Sediment, Field Trip Guidebook. IAS, Copenhagen, pp 29–58

    Google Scholar 

  • Surlyk F, Johansen G (1984) End-Cretaceous brachiopod extinctions in the chalk of Denmark. Science 223: 1174–1177

    Google Scholar 

  • Teichert C (1958) Cold and deep-water coral banks. AAPG Bull 42: 1064–1082

    Google Scholar 

  • Thomsen E (1977) Phenetic variability and functional morphology of erect cheilostome bryozoans from the Danian (Palaeocene) of Denmark. Paleobiology 3: 360–376

    Google Scholar 

  • Thomsen E (1983) Relation between currents and growth of Palaeocene reef mounds. Lethaia 16: 165–184

    Google Scholar 

  • Thomsen E (1995) Kalk og kridt i den danske undergrund. In: Nielsen OB (ed) Danmarks geologi fra Kridt til I dag. Aarhus Geokompend, Geol Inst, Arhus Univ 1, pp 31–67

    Google Scholar 

  • Voigt E (1958) Untersuchungen an Oktokorallen aus der oberen Kreide. Mitt Geol Staatsinst Hamburg 27: 5–49

    Google Scholar 

  • Voigt E (1959) Endosacculus moltkiae, n.g., n.sp., ein vermutlicher fossiler Ascothoracide (Entomostr.) als Cystenbildner bei der Oktokoralle Moltkia minuta. Paläont Z 33: 211–223

    Google Scholar 

  • Wendler J, Willems H (2002) Distribution pattern of calcareous dinoflagellate cysts across the Cretaceous-Tertiary boundary (Fish Clay, Stevns Klint, Denmark): Implications for our understanding of species-selective extinction. GSA Spec Pap 356: 265–393

    Google Scholar 

  • Willumsen ME (1995) Early lithification in Danian azooxanthellate scleractinian lithoherms, Faxe Quarry, Denmark. Beitr Paläont Wien 20: 123–131

    Google Scholar 

  • Ziegler PA (1990) Geological Atlas of Western and Central Europe. Shell, The Hague, 239 pp, 56 maps

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernecker, M., Weidlich, O. (2005). Azooxanthellate corals in the Late Maastrichtian - Early Paleocene of the Danish basin: bryozoan and coral mounds in a boreal shelf setting. In: Freiwald, A., Roberts, J.M. (eds) Cold-Water Corals and Ecosystems. Erlangen Earth Conference Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27673-4_1

Download citation

Publish with us

Policies and ethics