Skip to main content

In Vitro Kinematics of the Replaced Knee

  • Chapter
Total Knee Arthroplasty
  • 3200 Accesses

Summary

Important information on knee kinematics can be obtained using in vitro methods. Specifically, mounting a cadaver lower extremity on an “Oxford” knee jig allows loading of the knee joint and makes it possible to observe physiological motion. This approach can provide a detailed description of the displacements and rotations of the patella, femur, and tibia, and direct measurement of load at both the patellofemoral and tibiofemoral articulations. Using this approach, the “two-axis” description of tibiofemoral kinematics has been advanced. Another application of this method describes lower patellofemoral contact forces when a more posterior femorotibial contact point is present after total knee arthroplasty. This kinematic information is useful when considering new designs in knee arthroplasty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blaha JD et al (2003) Kinematics of the human knee using an open chain cadaver model. Clin Orthop 410:25–34

    PubMed  Google Scholar 

  2. Blankevoort L et al (1990) Helical axes of passive knee joint motions. J Biomech 23:1219–1229

    Article  PubMed  Google Scholar 

  3. Churchill DL et al (1998) The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop 356:111–118

    Article  PubMed  Google Scholar 

  4. Churchill DL et al (2001) The influence of femoral roll-back on patellofemoral contact loads in total knee arthroplasty. J Arthroplasty 16:909–918

    Article  PubMed  Google Scholar 

  5. Coughlin KM et al (2003) Tibial axis and patellar position relative to the femoral epicondylar axis during squatting. J Arthroplasty 18:1048–1055

    Article  PubMed  Google Scholar 

  6. D’Lima DD et al (2003) Impact of patellofemoral design on patellofemoral forces and polyethylene stresses. J Bone Joint Surg [Am] 85[Suppl 4]: 85–93

    Google Scholar 

  7. D’Lima DD et al (2000) Comparison between the kinematics of fixed and rotating bearing knee prostheses. Clin Orthop 380:151–157

    PubMed  Google Scholar 

  8. Elias S et al (1990) A correlative study of the geometry and anatomy of the distal femur. Clin Orthop 260:98–103

    PubMed  Google Scholar 

  9. Frankel V (1971) Biomechanics of the knee. Orthop Clin North Am 2:175–190

    PubMed  Google Scholar 

  10. Hollister AM et al (1993) The axes of rotation of the knee. Clin Orthop 290:259–268

    PubMed  Google Scholar 

  11. Incavo SJ et al (1997) Knee kinematics in genesis total knee arthroplasty. A comparison of different tibial designs with and without posterior cruciate substitution in cadaveric specimens. Am J Knee Surg 10:209–215

    PubMed  Google Scholar 

  12. Incavo SJ et al (2003) Anatomic rotational relationships of the proximal tibia, distal femur, and patella: implications for rotational alignment in total knee arthroplasty. J Arthroplasty 18:643–648

    Article  PubMed  Google Scholar 

  13. Jonsson H et al (1994) Three-dimensional knee joint movements during a step-up: evaluation after anterior cruciate ligament rupture. J Orthop Res 12:769–779

    Article  PubMed  Google Scholar 

  14. Karrholm J et al (1994) Kinematics of successful knee prostheses during weight-bearing: three-dimensional movements and positions of screw axes in the Tricon-M and Miller-Galante designs. Knee Surg Sports Traumatol Arthrosc 2:50–59

    Article  PubMed  Google Scholar 

  15. Li G et al (2001) Cruciate-retaining and cruciate-substituting total knee arthroplasty: an in vitro comparison of the kinematics under muscle loads. J Arthroplasty 16[Suppl 1]:150–156

    Article  PubMed  Google Scholar 

  16. Most E et al. (2003) The kinematics of fixed-and mobile-bearing total knee arthroplasty. Clin Orthop 416:197–207

    PubMed  Google Scholar 

  17. Nordin M, Frankel VH (2001) Biomechanics of the knee. In: Nordin M, Frankel VH (eds) Basic biomechanics of the musculoskeletal system. Lippencott Williams and Wilkins, Philadelphia

    Google Scholar 

  18. Weidenhielm L et al (1993) Knee motion after tibial osteotomy for arthhrosis. Acta Orthop Scand 64:317–319

    PubMed  Google Scholar 

  19. Woltring H et al (1985) Finite centroid and helical axis estimation from noisy landmark measurements in the study of human joint kinematics. J Biomech 18:379–389

    Article  PubMed  Google Scholar 

  20. Wulff W, Incavo SJ (2000) The effect of patella preparation for total knee arthroplasty on patellar strain: a comparison of resurfacing versus inset implants. J Arthroplasty 15:778–782

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Incavo, S., Beynnon, B., Coughlin, K. (2005). In Vitro Kinematics of the Replaced Knee. In: Bellemans, J., Ries, M.D., Victor, J.M. (eds) Total Knee Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27658-0_23

Download citation

  • DOI: https://doi.org/10.1007/3-540-27658-0_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20242-4

  • Online ISBN: 978-3-540-27658-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics