Skip to main content

Kinematics of Mobile Bearing Total Knee Arthroplasty

  • Chapter
Book cover Total Knee Arthroplasty

Summary

Review of the kinematic patterns of fixed- vs. mobile-bearing TKA has not demonstrated major differences, with the following exceptions. Less (minimal) anteroposterior translation of both the medial and lateral femoral condyles was observed during gait in patients who received mobile-bearing designs than in those implanted with fixed-bearing TKA. This is likely secondary to the increased sagittal femorotibial conformity present in most mobile-bearing designs. This reduces polyethylene shear stresses and should result in lower polyethylene wear rates in mobile-bearing TKA.

In rotating-platform mobile-bearing designs, axial rotation occurs primarily on the inferior surface of the polyethylene bearing, as compared with primarily on the superior surface in fixed-bearing TKA. This should reduce shear forces on the superior aspect of the polyethylene bearing, thereby lessening wear. Additionally, while average axial rotational values following TKA were limited (<10°), a significant number of subjects exhibited higher magnitudes (>20°) of rotation which exceed the rotational limits of most fixed bearing TKA designs. This may be an advantage of rotating-platform mobile-bearing TKA designs which can accommodate a wider range of axial rotation without creation of excessive polyethylene stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andriacchi TP, Stanwyck TS, Galante JO (1986) Knee biomechanics and total knee replacement. J Arthroplasty 1:211–219

    PubMed  Google Scholar 

  2. Andriacchi TP (1993) Functional analysis of pre-and post-knee surgery. Total knee arthroplasty and ACL reconstruction. J Biomech Eng 115:575–581

    PubMed  Google Scholar 

  3. Andriacchi TP, Galante JO, Fermier RS (1994) Patient outcomes following tricompartmental total knee replacement. JAMA 271:1349

    PubMed  Google Scholar 

  4. Argenson JN, Komistek RD, Aubaniac JM, Dennis DA, Northcut EJ, Anderson DT, Agostini S (2002) In vivo determination of knee kinematics for subjects implanted with a unicompartmental arthroplasty. J Arthroplasty 17:1048–1054

    Article  Google Scholar 

  5. Bartel DL, Burstein AH, Santavicca EA, Insall JN (1982) Performance of the tibial component in total knee replacement. J Bone Joint Surg [Am] 64:1026–1033

    PubMed  Google Scholar 

  6. Bertin KC, Komistek RD, Dennis, DA, Hoff WA, Anderson DT, Langer T (2002) In vivo determination of posterior femoral rollback for subjects having a NexGen posterior cruciate retaining total knee arthroplasty. J Arthroplasty 17:1040–1048

    Article  PubMed  Google Scholar 

  7. Blunn GW, Walker PS, Joshi A, Hardinge K (1991) The dominance of cyclic sliding in producing wear in total knee replacements. Clin Orthop 273:253–260

    PubMed  Google Scholar 

  8. Buechel FF, Buechel FF, Pappas MJ, Dalessio J (2002) Twenty-year evaluation of the New Jersey LCS rotating platform knee replacement. J Knee Surg 15:84–89

    PubMed  Google Scholar 

  9. Callaghan JJ, Insall JN, Greenwald AS, Dennis DA, Komistek RD, et al (2000) Mobile bearing knee replacement. J Bone Joint Surg [Am] 82:1020–1041

    Google Scholar 

  10. D’Lima DD, Trice M, Urquhart AG, Colwell CW Jr (2001) Tibiofemoral conformity and kinematics of rotating-bearing knee prostheses. Clin Orthop 386:235–242

    PubMed  Google Scholar 

  11. Dennis DA, Komistek RD, Hoff WA, Gabriel SM (1996) In vivo knee kinematics derived using an inverse perspective technique. Clin Orthop 331:107–117

    Article  PubMed  Google Scholar 

  12. Dennis DA, Komistek RD, Cheal EJ, Stiehl JB, Walker SA (1997) In vivo femoral condylar lift-off in total knee arthroplasty. Orthop Trans 21:1112

    Google Scholar 

  13. Dennis DA, Komistek RD, Colwell CE, Ranawat SC, Scott RD, Thornhill TS, Lapp MA (1998) In vivo anteroposterior femorotibial translation of total knee arthroplasty: a multicenter analysis. Clin Orthop 356:47–57

    Article  PubMed  Google Scholar 

  14. Dennis DA, Komistek RD, Stiehl JB, Walker SA, Dennis K (1998) Range of motion following total knee arthroplasty: The effect of implant design and weight-bearing conditions. J Arthroplasty 13:748–752

    Article  PubMed  Google Scholar 

  15. Dennis DA, Komistek RD, Cheal EJ, Walker SA, Stiehl JB (2001) Femoral condylar liftoff in vivo in total knee arthroplasty. J Bone Joint Surg [Br] 83:33–39

    Article  Google Scholar 

  16. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop 416:37–57

    Google Scholar 

  17. Dennis DA, Komistek RD (2003) Evaluation of range of motion after PFC Sigma posterior stabilized rotating platform total knee arthroplasty. Internal Report at the Rocky Mountain Musculoskeletal Research Laboratory

    Google Scholar 

  18. Dennis DA, Komistek RD, Mahfouz MR, Walker SA, Tucker A (2004) A multicenter analysis of axial femorotibial rotation after total knee arthroplasty. Clin Orthop 428:180–189

    PubMed  Google Scholar 

  19. Draganich LF, Andriacchi T, Andersson GBJ (1987) Interaction between intrinsic knee mechanics and the knee extensor mechanism. J Orthop Res 5:539–547

    Article  PubMed  Google Scholar 

  20. Faris, PM, Ritter MA, Keating EM, Meding JB, Harty LD (2003) The AGC allpolyethylene tibial component: a ten-year clinical evaluation. J Bone Joint Surg [Am] 85:489–493

    PubMed  Google Scholar 

  21. Fukubayashi T, Torzilli PA, Sherman MF, Warren RF (1982) An in vitro biomechanical evaluation of anterior-posterior motion of the knee. Tibial displacement, rotation, and torque. J. Bone Joint Surg [Am] 64:258–264

    PubMed  Google Scholar 

  22. Haas BD, Dennis DA, Komistek RD, Brumley JT, Hammill C (2001) Range of motion of posterior-cruciate-substituting total knee replacements: the effect of bearing mobility. J Bone Joint Surg [Am] 83[Suppl 2]:51–55

    PubMed  Google Scholar 

  23. Haas BD, Komistek RD, Dennis DA (2002) In vivo kinematics of the low contact stress rotating platform total knee. Orthopedics 25[Suppl 2]: 219–26

    Google Scholar 

  24. Haas BD, Komistek RD, Stiehl JB, Anderson DT, Northcut EJ (2002) Kinematic comparison of posterior cruciate sacrifice versus substitution in a mobile bearing total knee arthroplasty. J Arthroplasty 17:685–692

    Article  PubMed  Google Scholar 

  25. Haas BD, Komistek RD, Kilgus D, Smith A, Hammill C, Walker SA (2005) Polyethylene bearing motion relative to the tibia and the femur in mobile bearing total knee arthroplasty. J Arthroplasty (submitted for publication)

    Google Scholar 

  26. Haas B, Komistek RD, Dennis DA (1999) In vivo kinematic comparison of posterior cruciate sacrificing and stabilized mobile total bearing knee arthroplasty. (Unpublished data, Rocky Mountain Musculoskeletal Research Laboratory; Denver, CO)

    Google Scholar 

  27. Hill PF, Williams VV, Iwaki H, Pinskerova V, Freeman MAR (2000) Tibiofemoral movement. 2: The loaded and unloaded living knee studied by MRI. J Bone Joint Surg [Br] 82:1196–1200

    Article  Google Scholar 

  28. Hoff WA, Komistek RD, Dennis DA, Walker SA, Northcut EJ, Spargo K (1996) Pose estimation of artificial knee implants in fluoroscopy images using a template matching technique. Proc. 3rd Workshop on Applications of Computer Vision, IEEE, Sarasota, FL, Dec. 2–4, pp 181–186

    Google Scholar 

  29. Hoff WA, Komistek RD, Dennis DA, Gabriel SA, Walker SA (1998) A three-dimensional determination of femorotibial contact positions under in vivo conditions using fluoroscopy. J Clin Biomech 13:455–470

    Article  Google Scholar 

  30. Hsieh HH, Walker PS (1976) Stabilizing mechanisms of the loaded and unloaded knee joint. J. Bone Joint Surg [Am] 58:87–93

    PubMed  Google Scholar 

  31. Insall JN, Hood RW, Flawn LB, Sullivan DJ (1983) Total condylar knee prosthesis in gonarthrosis: a five-to nine-year follow-up of the first one hundred consecutive replacements. J Bone Joint Surg [Am] 65:619–628

    PubMed  Google Scholar 

  32. Insall JN, Scuderi GR, Komistek RD, Math K, Dennis DA, Anderson DT (2002) Correlation between condoylar lift-off and femoral component alignment. Clin Orthop 403:143–152

    PubMed  Google Scholar 

  33. Iwaki H, Pinskerova V, Freeman MAR (2000) Tibiofemoral movement. 1: The shapes and relative movements of the femur and tibia in unloaded cadaver knee. J Bone Joint Surg [Br] 82:1189–1195

    Article  PubMed  Google Scholar 

  34. Jonsson J, Karrholm J, Elmquist LG (1989) Kinematics of active knee extension after tear of the anterior cruciate ligament. Am J Sports Med 17:796–802

    PubMed  Google Scholar 

  35. Karrholm J, Jonsson H, Nilsson KG, Soderqvisy I (1994) Kinematics of successful knee prosthesis during weight-bearing: three dimensional movements and positions of screw axes in the Tricon-M and Miller-Galante designs. Knee Surg Sports Traumatol Arthrosc 2:50–59

    Article  PubMed  Google Scholar 

  36. Karrholm J, Brandsson S, Freeman MAR (2000) Tibiofemoral movement. 4: Changes of axial tibial rotation caused by forced rotation at the weight-bearing knee studied by RSA. J Bone Joint Surg [Br] 82:1201–1203

    Article  Google Scholar 

  37. Komistek RD, Scott RD, Dennis DA, Yasgur D, Anderson DT, Hajner ME (2002) In vivo comparison of femorotibial contact positions for press-fit posterior stabilized and posterior cruciate-retaining total knee arthroplasties. J Arthroplasty 17:209–216

    Article  PubMed  Google Scholar 

  38. Komistek RD, Dennis DA, Mahfouz MR (2003) In vivo fluoroscopic analysis of the normal knee. Clin Orthop 410:69–81

    PubMed  Google Scholar 

  39. Komistek RD, Dennis DA, Mahfouz MR, Walker SA, Outten J (2004) In vivo polyethylene mobility is maintained in posterior stabilized total knee arthroplasty. Clin Orthop 428:207–213

    PubMed  Google Scholar 

  40. Lafortune M, Cavanagh P, Sommer I III, Kalenak A (1992) A three-dimensional kinematics of the human knee during walking. J Biomech 25:347–357

    Article  PubMed  Google Scholar 

  41. Mahfouz MR (2001) In vivo estimation of six degrees of freedom position and orientation for non-implanted human joints from single plane fluoroscopy. PhD Dissertation, Colorado School of Mines, Engineering, Golden, CO

    Google Scholar 

  42. Mahfouz MR, Hoff WA, Komistek, RD, Dennis DA (2003) A robust method for registration of three-dimensional knee implant models to two-dimensional fluoroscopy images. IEEE Trans Med Imaging 22:1561–1574

    Article  PubMed  Google Scholar 

  43. Mahoney OM, Nobel PC, Rhoads DD, Alexander JW, Tullos HS (1994) Posterior cruciate function following total knee arthroplasty: a biomechanical study. J Arthroplasty 9:569

    Article  PubMed  Google Scholar 

  44. Miller GJ, Perry W, Goll C (1995) Congruency and varus/valgus loading effect on prosthetic knee contact stress. Combined Orthopedic Research Society (English Speaking World), San Diego, CA, Nov 6–8

    Google Scholar 

  45. Muller W (1983) The knee. Form, function and ligament reconstruction: kinematics. Springer-Verlag, Berlin Heidelberg New York, pp 8–17

    Google Scholar 

  46. Murphy M (1990) Geometry and the kinematics of the normal human knee. Ph.D. thesis, Dept of Mechanical Engineering, Massachusetts Institute of Technology

    Google Scholar 

  47. Murphy MC, Zarins B, Jasty M, Mann RW (1995) In vivo measurement of the three-dimensional skeletal motion at the normal knee. Trans Orthop Res Soc, p 142

    Google Scholar 

  48. Murray DW, Goodfellow JW, O’Connor JJ (1998) The Oxford medial unicompartmental arthroplasty: a ten-year survival study. J Bone Joint Surg [Br] 80:983–989

    Article  PubMed  Google Scholar 

  49. Nilsson KG, Karrholm J, Ekelund L (1990) Knee motion in total knee arthroplasty. A roentgen stereophotogrammetric analysis of the kinematics of the Tricon-M knee prosthesis. Clin Orthop 256:147–161

    PubMed  Google Scholar 

  50. Nilsson KG, Karrholm J, Gadegaard P (1991) Abnormal kinematics of the artificial knee. Roentgen stereophotogrammetric analysis of 10 Miller-Galante and five New Jersey LCS knees. Acta Orthop Scand 62:440–446

    PubMed  Google Scholar 

  51. O’Connor J, Shercliff T, Fitzpatrick D, Biden E, Goodfellow J (1990) Mechanics of the knee, In: Daniel DM, Akeson WH, O’Connor JJ (eds) Knee ligaments: structures, function, injury and repair. Raven, New York, pp 201–237

    Google Scholar 

  52. Oakshott R, Komistek RD, Anderson DT, Haas BD, Dennis DA (2000) In vivo passive vs weight-bearing knee kinematics for subjects implanted with a mobile bearing that can freely translate and rotate. Internal report at Rocky Mountain Musculoskeletal Research Laboratory

    Google Scholar 

  53. Oishi CS, Kaufman KR, Irby SE, Colwell CW Jr (1996) Effects of patellar thickness on compression and shear forces in total knee arthroplasty. Clin Orthop 331:283–290

    Article  PubMed  Google Scholar 

  54. Otto JK, Callaghan, JJ, Brown TD (2001) Mobility and contact mechanics of a rotating platform total knee replacement. Clin Orthop 392:24–37

    PubMed  Google Scholar 

  55. Ranawat CS, Komistek RD, Rodriguez JA, Dennis DA, Anderle M (2004) In vivo kinematics for fixed and mobile-bearing posterior stabilized knee prostheses. Clin Orthop 419:1–7

    Google Scholar 

  56. Ritter MA, Worland R, Saliski J, Helphenstine JV, Edmondson KL, Keating EM, Faris PM, Meding JB (1995) Flat-on-flat, nonconstrained, compression-molded polyethylene total knee replacement. Clin Orthop 321:79–85

    PubMed  Google Scholar 

  57. Sarojak ME (1998) Model-fit: an interactive pose-determining system. Engineering thesis, Colorado School of Mines, Golden, CO

    Google Scholar 

  58. Scuderi GR, Komistek RD, Dennis DA, Insall JN (2003) The impact of femoral component rotational alignment on condoylar liftoff. Clin Orthop 410:148–54

    PubMed  Google Scholar 

  59. Stiehl JB, Komistek RD, Dennis DA, Paxson RD (1995) Fluoroscopic analysis of kinematics after posterior-cruciate-retaining knee arthroplasty. J Bone Joint Surg [Br] 77:884–889

    Google Scholar 

  60. Stiehl JB, Dennis DA, Komistek RD, Keblish PA (1997) In vivo kinematic analysis of a mobile-bearing total knee prosthesis. Clin Orthop 345:60–66

    Article  PubMed  Google Scholar 

  61. Stiehl JB, Dennis DA, Komistek RD, Crane H (1999) In vivo determination of condylar liftoff and screw home in a mobile bearing total knee arthroplasty. J Arthroplasty 14:293–299

    Article  PubMed  Google Scholar 

  62. Stiehl JB, Komistek RD, Dennis DA (1999) Detrimental kinematics of a flat-on-flat total condoylar knee arthroplasty. Clin Orthop 365:139–148

    PubMed  Google Scholar 

  63. Stiehl JB, Dennis DA, Komistek RD, Keblish P (2000) In vivo comparison of posterior cruciate retaining and sacrificing mobile bearing total knee arthroplasty. Am J Knee Surg 13:13–18

    PubMed  Google Scholar 

  64. Stiehl JB, Komistek RD, Cloutier JM, Dennis DA (2000) The cruciate ligaments in total knee arthroplasty: a kinematic analysis of 2 total knee arthroplasties. J Arthroplasty 15:545–550

    Article  PubMed  Google Scholar 

  65. Stiehl JB, Komistek RD, Dennis DA (2001) A novel approach to knee kinematics. Am J Orthop 30:287–293

    Article  PubMed  Google Scholar 

  66. Stiehl JB, Komistek RD, Haas BD, Dennis DA (2001) Frontal plane kinematics after mobile-bearing total knee arthroplasty. Clin Orthop 392:56–61

    PubMed  Google Scholar 

  67. Walker PS, Komistek RD, Barrett DS, Anderson D, Dennis DA, Sampson M (2002) Motion of a mobile bearing knee allowing translation and rotation. J Arthroplasty 17:11–19

    Article  Google Scholar 

  68. Wilson SA, McCann PD, Gotlin RS, Ramakrishnan HK, Wootten ME, Insall JN (1996) Comprehensive gait analysis in posterior-stabilized knee arthroplasty. J Arthroplasty 11:359

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Medizin Verlag Heidelberg

About this chapter

Cite this chapter

Dennis, D.A., Komistek, R.D. (2005). Kinematics of Mobile Bearing Total Knee Arthroplasty. In: Bellemans, J., Ries, M.D., Victor, J.M. (eds) Total Knee Arthroplasty. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27658-0_20

Download citation

  • DOI: https://doi.org/10.1007/3-540-27658-0_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20242-4

  • Online ISBN: 978-3-540-27658-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics