Skip to main content

Part of the book series: Medical Radiology Diagnostic Imaging ((Med Radiol Diagn Imaging))

  • 1638 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerstaff E, Glunde K et al (2003) Choline phospholipid metabolism: a target in cancer cells? J Cell Biochem 90:525–533

    Article  PubMed  CAS  Google Scholar 

  • Alger JR, Frank JA et al (1990) Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18. uorodeoxyglucose PET. Radiology 177:633–641

    CAS  Google Scholar 

  • Aronen HJ, Gazit IE et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    PubMed  CAS  Google Scholar 

  • Balesaria S, Brock C et al (1999) Loss of chromosome 10 is an independent prognostic factor in high-grade gliomas. Br J Cancer 81:1371–1377

    Article  PubMed  CAS  Google Scholar 

  • Bauman G, Lote K et al (1999) Pretreatment factors predict overall survival for patients with low-grade glioma: a recursive partitioning analysis. Int J Radiat Oncol Biol Phys 45:923–929

    PubMed  CAS  Google Scholar 

  • Bhakoo KK, Williams SR et al (1996) Immortalization and transformation are associated with specific alterations in choline metabolism. Cancer Res 56:4630–4635

    PubMed  CAS  Google Scholar 

  • Bizzi A, Movsas B et al (1995) Response of non-Hodgkin lymphoma to radiation therapy: early and long-term assessment with H-1 MR spectroscopic imaging. Radiology 194:271–276

    PubMed  CAS  Google Scholar 

  • Bruhn H, Frahm J et al (1989) Noninvasive differentiation of tumors with use of localized H-1 MR spectroscopy in vivo: initial experience in patients with cerebral tumors. Radiology 172:541–548

    PubMed  CAS  Google Scholar 

  • Brunberg JA, Chenevert TL et al (1995) In vivo MR determination of water diffusion coefficients and diffusion anisotropy: correlation with structural alteration in gliomas of the cerebral hemispheres. AJNR Am J Neuroradiol 16:361–371

    PubMed  CAS  Google Scholar 

  • Burger PC, Dubois PJ et al (1983) Computerized tomographic and pathologic studies of the untreated, quiescent, and recurrent glioblastoma multiforme. J Neurosurg 58:159–169

    PubMed  CAS  Google Scholar 

  • Cairncross JG, Ueki K et al (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479

    Article  PubMed  CAS  Google Scholar 

  • Cha S, Knopp EA et al (2000) Dynamic contrast-enhanced T2-weighted MR imaging of recurrent malignant gliomas treated with thalidomide and carboplatin. AJNR Am J Neuroradiol 21:881–890

    PubMed  CAS  Google Scholar 

  • Cha S, Knopp EA et al (2002) Intracranial mass lesions: dynamic contrast-enhanced susceptibility-weighted echoplanar perfusion MR imaging. Radiology 223:11–29

    PubMed  Google Scholar 

  • Chow KL, Gobin YP et al (2000) Prognostic factors in recurrent glioblastoma multiforme and anaplastic astrocytoma treated with selective intra-arterial chemotherapy. AJNR Am J Neuroradiol 21:471–478

    PubMed  CAS  Google Scholar 

  • Conturo TE, Lori NF et al (1999) Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci USA 96:10422–10427

    Article  PubMed  CAS  Google Scholar 

  • DeAngelis LM (2001) Brain tumors. N Engl J Med 344:114–123

    Article  PubMed  CAS  Google Scholar 

  • De Edelenyi FS, Rubin C et al (2000) A new approach for analyzing proton magnetic resonance spectroscopic images of brain tumors: nosologic images. Nat Med 6:1287–1289

    PubMed  Google Scholar 

  • Delbeke D, Meyerowitz C et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52

    PubMed  CAS  Google Scholar 

  • Demaerel P, Johannik K et al (1991) Localized 1H NMR spectroscopy in fifty cases of newly diagnosed intracranial tumors. J Comput Assist Tomogr 15:67–76

    PubMed  CAS  Google Scholar 

  • Fortin D, Cairncross GJ et al (1999) Oligodendroglioma: an appraisal of recent data pertaining to diagnosis and treatment. Neurosurgery 45:1279–1291; discussion 1291

    PubMed  CAS  Google Scholar 

  • Fujimaki TM, Nakamura MO et al (1991) Correlation between bromodeoxyuridine-labeling indices and patient prognosis in cerebral astrocytic tumors of adults. Cancer 67:1629–1634

    PubMed  CAS  Google Scholar 

  • Fulham MJ, Bizzi A et al (1992) Mapping of brain tumor metabolites with proton MR spectroscopic imaging: clinical relevance. Radiology 185:675–686

    PubMed  CAS  Google Scholar 

  • Gupta RK, Cloughesy TF et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226

    Article  PubMed  CAS  Google Scholar 

  • Hara T, Kondo T et al (2003) Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas. J Neurosurg 99:474–479

    PubMed  Google Scholar 

  • Harting I, Hartmann M et al (2003) Differentiating primary central nervous system lymphoma from glioma in humans using localised proton magnetic resonance spectroscopy. Neurosci Lett 342:163–166

    Article  PubMed  CAS  Google Scholar 

  • Hartmann M, Heiland S et al (2003) Distinguishing of primary cerebral lymphoma from high-grade glioma with perfusion-weighted magnetic resonance imaging. Neurosci Lett 338:119–122

    Article  PubMed  CAS  Google Scholar 

  • Hein PA, Eskey CJ et al (2004) Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: tumor recurrence versus radiation injury. AJNR Am J Neuroradiol 25:201–209

    PubMed  Google Scholar 

  • Henry RG, Berman JI et al (2004) Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping. Neuroimage 21:616–622

    Article  PubMed  Google Scholar 

  • Hoshino TP, Wilson M, CB et al (1989) Prognostic implications of the bromodeoxyuridine labeling index of human gliomas. J Neurosurg 71:335–341

    PubMed  CAS  Google Scholar 

  • Hoshino TT, Muraoka JJ et al (1980) An autoradiographic study of human gliomas: growth kinetics of anaplastic astrocytoma and glioblastoma multiforme. Brain 103:967–984

    PubMed  CAS  Google Scholar 

  • Hoshino TW, CB (1979) Cell kinetic analysis of human malignant brain tumors (gliomas). Cancer 44:956–962

    PubMed  CAS  Google Scholar 

  • Howard AP, SR (1953) Synthesis of deoxyribonucleic acid in normal and irradiated cells and its relation to chromosomal breakage. Heredity 6[Suppl]:261–273

    CAS  Google Scholar 

  • Kelly PJ, Daumas-Duport C et al (1987) Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. J Neurosurg 66:865–874

    PubMed  CAS  Google Scholar 

  • Kim S, Chung JK et al (2004 ) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with( 18)F-FDG PET. Eur J Nucl Med Mol Imaging

    Google Scholar 

  • Kleihues P, Cavenee WK (eds) (2000) World Health Organization Classification of tumours: pathology and genetics of tumours: pathology and genetics of tumours of the nervous system. IARC Press, Lyon, France pp 6–7

    Google Scholar 

  • Knopp EA, Cha S et al (1999) Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 211:791–798

    PubMed  CAS  Google Scholar 

  • Kono K, Inoue Y et al (2001) The role of diffusion-weighted imaging in patients with brain tumors. AJNR Am J Neuroradiol 22:1081–1088

    PubMed  CAS  Google Scholar 

  • Kowalczuk A, Macdonald RL et al (1997) Quantitative imaging study of extent of surgical resection and prognosis of malignant astrocytomas. Neurosurgery 41:1028–1036; discussion 1036-1038

    PubMed  CAS  Google Scholar 

  • Kuesel AC, Sutherland GR et al (1994) 1H-MRS of high grade astrocytomas: mobile lipid accumulation in necrotic tissue. NMR Biomed 7:149–155

    PubMed  CAS  Google Scholar 

  • Law M, Cha S et al (2002) High-grade gliomas and solitary metastases: differentiation by using perfusion and proton spectroscopic MR imaging. Radiology 222:715–721

    PubMed  Google Scholar 

  • Law M, Yang S et al (2003) Glioma grading: sensitivity, specificity, and predictive values of perfusion MR imaging and proton MR spectroscopic imaging compared with conventional MR imaging. AJNR Am J Neuroradiol 24:1989–1998

    PubMed  Google Scholar 

  • Lee YY, van Tassel P (1989) Intracranial oligodendrogliomas: imaging findings in 35 untreated cases. AJR Am J Roentgenol 152:361–369

    PubMed  CAS  Google Scholar 

  • Lev MH, Ozsunar Y et al (2004) Glial tumor grading and outcome prediction using dynamic spin-echo MR susceptibility mapping compared with conventional contrastenhanced MR: confounding effect of elevated rCBV of oligodendrogliomas (corrected). AJNR Am J Neuroradiol 25:214–221

    PubMed  Google Scholar 

  • Li X, Lu Y et al (2002) Analysis of the spatial characteristics of metabolic abnormalities in newly diagnosed glioma patients. J Magn Reson Imaging 16:229–237

    PubMed  Google Scholar 

  • Lori NF, Akbudak E et al (2002) Diffusion tensor fiber tracking of human brain connectivity: acquisition methods, reliability analysis and biological results. NMR Biomed 15:494–515

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Ahn D et al (2003) Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. AJNR Am J Neuroradiol 24:937–941

    PubMed  Google Scholar 

  • Macara IG (1989) Elevated phosphocholine concentration in ras-transformed NIH 3T3 cells arises from increased choline kinase activity, not from phosphatidylcholine breakdown. Mol Cell Biol 9:325–328

    PubMed  CAS  Google Scholar 

  • Mendelsohn M (1962) Autoradiographic analysis of cell proliferation in spontaneous breast cancer of C3H mouse III. The growth fraction. J Natl Cancer Inst 28:1015–1029

    PubMed  CAS  Google Scholar 

  • Mori S, van Zijl PC (2002) Fiber tracking: principles and strategies —a technical review. NMR Biomed 15:468–480

    Article  PubMed  Google Scholar 

  • Mori S, Frederiksen K et al (2002) Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol 51:377–380

    PubMed  Google Scholar 

  • Negendank W (1992) Studies of human tumors by MRS: a review. NMR Biomed 5:303–324

    PubMed  CAS  Google Scholar 

  • Nordqvist AC, Smurawa H et al (2001 ) Expression of matrix metalloproteinases 2 and 9 in meningiomas associated with different degrees of brain invasiveness and edema. J Neurosurg 95:839–844

    PubMed  CAS  Google Scholar 

  • Ogawa T, Shishido F et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53

    PubMed  CAS  Google Scholar 

  • Ohtani T, Kurihara H et al (2001) Brain tumour imaging with carbon-11 choline: comparison with FDG PET and gadolinium-enhanced MR imaging. Eur J Nucl Med 28:1664–1670

    Article  PubMed  CAS  Google Scholar 

  • Olson JD, Riedel E et al (2000) Long-term outcome of lowgrade oligodendroglioma and mixed glioma. Neurology 54:1442–1448

    PubMed  CAS  Google Scholar 

  • Paek SH, Kim CY et al (2002) Correlation of clinical and biological parameters with peritumoral edema in meningioma. J Neurooncol 60:235–245

    PubMed  Google Scholar 

  • Patronas NJ, Brooks RA et al (1983) Glycolytic rate (PET) and contrast enhancement (CT) in human cerebral gliomas. AJNR Am J Neuroradiol 4:533–535

    PubMed  CAS  Google Scholar 

  • Pierpaoli C, Basser PJ (1996) Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med 36:893–906

    PubMed  CAS  Google Scholar 

  • Pirotte B, Goldman S et al (1995) Use of positron emission tomography (PET) in stereotactic conditions for brain biopsy. Acta Neurochir (Wien) 134:79–82

    Article  CAS  Google Scholar 

  • Pirotte B, Goldman S et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298

    PubMed  CAS  Google Scholar 

  • Pirzkall A, McKnight TR et al (2001) MR-spectroscopy guided target delineation for high-grade gliomas. Int J Radiat Oncol Biol Phys 50:915–928

    Article  PubMed  CAS  Google Scholar 

  • Podo F (1999) Tumour phospholipid metabolism. NMR Biomed 12:413–439

    Article  PubMed  CAS  Google Scholar 

  • Poptani H, Gupta RK et al (1995) Characterization of intracranial mass lesions with in vivo proton MR spectroscopy. AJNR Am J Neuroradiol 16:1593–1603

    PubMed  CAS  Google Scholar 

  • Preul MC, Caramanos Z et al (1996) Accurate, noninvasive diagnosis of human brain tumors by using proton magnetic resonance spectroscopy. Nat Med 2:323–325

    Article  PubMed  CAS  Google Scholar 

  • Reeves GI, Marks JE (1979) Prognostic significance of lesion size for glioblastoma multiforme. Radiology 132:469–471

    PubMed  CAS  Google Scholar 

  • Roberts HC, Roberts TP et al (2000) Quantitative measurement of microvascular permeability in human brain tumors achieved using dynamic contrast-enhanced MR imaging: correlation with histologic grade. AJNR Am J Neuroradiol 21:891–899

    PubMed  CAS  Google Scholar 

  • Rock JP, Hearshen D et al (2002) Correlations between magnetic resonance spectroscopy and image-guided histopathology, with special attention to radiation necrosis. Neurosurgery 51:912–919; discussion 919-920

    PubMed  Google Scholar 

  • Scherer H (1940) The forms of growth in gliomas and their practical significance. Brain 63:1–35

    Google Scholar 

  • Schlemmer HP, Bachert P et al (2002) Differentiation of radiation necrosis from tumor progression using proton magnetic resonance spectroscopy. Neuroradiology 44:216–222

    PubMed  CAS  Google Scholar 

  • Shimizu H, Kumabe T et al (2000) Correlation between choline level measured by proton MR spectroscopy and Ki-67 labeling index in gliomas. AJNR Am J Neuroradiol 21:659–665

    PubMed  CAS  Google Scholar 

  • Sijens PE, Levendag PC et al (1996) 1H MR spectroscopy detection of lipids and lactate in metastatic brain tumors. NMR Biomed 9:65–71

    Article  PubMed  CAS  Google Scholar 

  • Sinha S, Bastin ME et al (2002) Diffusion tensor MR imaging of high-grade cerebral gliomas. AJNR Am J Neuroradiol 23:520–527

    PubMed  Google Scholar 

  • Smith JS, Perry A et al (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645

    PubMed  CAS  Google Scholar 

  • Sugahara T, Korogi Y et al (1999) Perfusion-sensitive MRI of cerebral lymphomas: a preliminary report. J Comput Assist Tomogr 23:232–237

    Article  PubMed  CAS  Google Scholar 

  • Tamiya T, Kinoshita K et al (2000) Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology 42:333–338

    Article  PubMed  CAS  Google Scholar 

  • Taylor JS, Langston JW et al (1996) Clinical value of proton magnetic resonance spectroscopy for differentiating recurrent or residual brain tumor from delayed cerebral necrosis. Int J Radiat Oncol Biol Phys 36:1251–1261

    PubMed  CAS  Google Scholar 

  • Tedeschi G, Lundbom N et al (1997) Increased choline signal coinciding with malignant degeneration of cerebral gliomas: a serial proton magnetic resonance spectroscopy imaging study. J Neurosurg 87:516–524

    PubMed  CAS  Google Scholar 

  • Tsuruda JS, Chew WM et al (1990) Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJNR Am J Neuroradiol 11:925–931; discussion 932-934

    PubMed  CAS  Google Scholar 

  • Usenius JP, Vainio P et al (1994) Choline-containing compounds in human astrocytomas studied by 1H NMR spectroscopy in vivo and in vitro. J Neurochem 63:1538–1543

    PubMed  CAS  Google Scholar 

  • Van Laere K, Ceyssens S et al (2004) Direct comparison of (18)F-FDG and (11)C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging Aug 10; [Epub ahead of print]

    Google Scholar 

  • Velema JP, Percy CL (1987) Age curve of central nervous system tumor incidence in adults: variation of shape by histologic type. JNCI 79:623

    PubMed  CAS  Google Scholar 

  • Villringer A, Rosen BR et al (1988) Dynamic imaging with lanthanide chelates in normal brain: contrast due to magnetic susceptibility effects. Magn Reson Med 6:164–174

    PubMed  CAS  Google Scholar 

  • Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    PubMed  CAS  Google Scholar 

  • Warmuth C, Gunther M et al (2003) Quantification of blood flow in brain tumors: comparison of arterial spin labeling and dynamic susceptibility-weighted contrast-enhanced MR imaging. Radiology 228:523–532

    PubMed  Google Scholar 

  • Warren KE, Patronas N et al (2001) Comparison of one-, two-, and three-dimensional measurements of childhood brain tumors. J Natl Cancer Inst 93:1401–1405

    Article  PubMed  CAS  Google Scholar 

  • Wetzel SG, Cha S et al (2002) Relative cerebral blood volume measurements in intracranial mass lesions: interobserver and intraobserver reproducibility study. Radiology 224:797–803

    PubMed  Google Scholar 

  • Wieshmann UC, Symms MR et al (2000) Diffusion tensor imaging demonstrates deviation of fibres in normal appearing white matter adjacent to a brain tumour. J Neurol Neurosurg Psychiatry 68:501–503

    Article  PubMed  CAS  Google Scholar 

  • Witwer BP, Moftakhar R et al (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97:568–575

    PubMed  Google Scholar 

  • Yoshii YM, Tsuboi YK et al (1986) Estimation of growth fraction with bromodeoxyuridine in human central nervous system tumors. J Neurosurg 65:659–663

    PubMed  CAS  Google Scholar 

  • Zoula S, Herigault G et al (2003) Correlation between the occurrence of 1H-MRS lipid signal, necrosis and lipid droplets during C6 rat glioma development. NMR Biomed 16:199–212

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bizzi, A., Pollo, B., Marras, C. (2005). Neoplastic Disorders. In: Filippi, M., De Stefano, N., Dousset, V., McGowan, J.C. (eds) MR Imaging in White Matter Diseases of the Brain and Spinal Cord. Medical Radiology Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27644-0_28

Download citation

  • DOI: https://doi.org/10.1007/3-540-27644-0_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40230-5

  • Online ISBN: 978-3-540-27644-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics