Skip to main content

Neurodegenerative Diseases with Associated White Matter Pathology

  • Chapter

Part of the book series: Medical Radiology Diagnostic Imaging ((Med Radiol Diagn Imaging))

Conclusions

Conventional MR imaging can show macroscopic white matter signal changes in degenerative diseases of the CNS which are a useful diagnostic tool for FTD, OPCA, SA, and PLS/ALS.

Non-conventional MR, including DTI, MT and 1H-MRS, demonstrates abnormalities of the white matter in almost every degenerative disease of the CNS. These white matter changes are variably correlated to the severity of the clinical deficit and are currently evaluated as markers of disease progression and possible surrogate markers in pharmacological trials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi M, Hosoya T, Yamaguchi K et al (2000) Diffusion-and T2 weighted MRI of the transverse pontine fibers in spino-cerebellar degeneration. Neuroradiology 42:803–809

    Article  PubMed  CAS  Google Scholar 

  • Adams RD, Victor M (1985) Degenerative diseases of the nervous system. In: Adams RD, Victor M (eds) Principles of neurology, 3rd edn. McGraw Hill, New York, pp 859–901

    Google Scholar 

  • Ashburner J, Friston KJ (2000) Voxel-based morphometry — the methods. Neuroimage 11:805–821

    Article  PubMed  CAS  Google Scholar 

  • Baron JC, Chetelat G, Desgranges B et al (2001) In vivo mapping of gray matter loss with voxel-based morphometry in mild Alzheimer’s disease. Neuroimage 14:298–309

    Article  PubMed  CAS  Google Scholar 

  • Boesch SM, Schoecke M, Burk K et al (2001) Proton magnetic resonance spectroscopic imaging reveals differences in spino-cerebellar ataxia types 2 and 6. J Magn Reson Imaging 13:553–559

    Article  PubMed  CAS  Google Scholar 

  • Bozzali M, Franceschi M, Falini A et al (2001) Quantification of tissue damage in AD using diffusion tensor and magnetization transfer MRI. Neurology 57:1135–1137

    PubMed  CAS  Google Scholar 

  • Bozzali M, Falini A, Franceschi M et al (2002) White matter damage in Alzheimer’s disease assessed in vivo using diffusion tensor magnetic resonance imaging. J Neurol Neurosurg Psychiatry 72:742–746

    Article  PubMed  CAS  Google Scholar 

  • Bozzao A, Floris R, Baviera ME et al (2001) Diffusion and perfusion MR imaging in cases of Alzheimer’s disease: correlations with cortical atrophy and lesion load. AJNR Am J Neuroradiol 22:1030–1036

    PubMed  CAS  Google Scholar 

  • Bowen BC, Pattany PM, Bradley WG et al (2000) MR imaging and localized proton spectroscopy of the precentral gyrus in amyotrophic lateral sclerosis. AJNR Am J Neuroradiol 21:647–658

    PubMed  CAS  Google Scholar 

  • Brenneis C, Bosch SM, Schocke M et al (2003) Atrophy pattern in SCA2 determined by voxel-based morphometry. Neuroreport 14:1799–1802

    PubMed  Google Scholar 

  • Brun A, Englund E (1986) A white matter disorder in dementia of the Alzheimer’s type. Ann Neurol 19:253–262

    Article  PubMed  CAS  Google Scholar 

  • Burk K, Abele M, Fetter M et al (1996) Autosomal dominant cerebellar ataxia type I. Clinical features and MRI in families with SCA1, SCA2 and SCA3. Brain 119:1497–1505

    PubMed  Google Scholar 

  • Catani M, Mecocci P, Tarducci R et al (2000) Proton magnetic resonance spectroscopy reveals similar white matter biochemical changes in patients with chronic hypertension and early Alzheimer’s disease. J Am Geriatr Soc 50:1707–1710

    Google Scholar 

  • Cercignani M, Iannucci G, Rocca MA et al (2000) Pathologic damage in MS assessed by diffusion-weighted and magnetization transfer MRI. Neurology 54:1139–1144

    PubMed  CAS  Google Scholar 

  • Cercignani M, Bammer R, Soriani MP et al (2003) Inter-sequence and inter-imaging unit variability of diffusion-tensor MR imaging histogram-derived metrics of the brain in healthy volunteers. AJNR Am J Neuroradiol 24:638–643

    PubMed  Google Scholar 

  • Chan S, Shungu DC, Douglas-Akinwande A et al (1999) Motor neuron diseases: comparison of single-voxel proton MR spectroscopy of the motor cortex with MR imaging of the brain. Radiology 212:763–769

    PubMed  CAS  Google Scholar 

  • Chan D, Fox NC, Jenkins R et al (2001) Rates of global and regional cerebral atrophy in AD and frontotemporal dementia. Neurology 57:1756–1763

    PubMed  CAS  Google Scholar 

  • Chantal S, Labelle M, Bouchard RW et al (2002) Correlation of regional proton magnetic resonance spectroscopic metabolic changes with cognitive deficits in mild Alzheimer’s disease. Arch Neurol 59:955–962

    Article  PubMed  Google Scholar 

  • Chun T, Filippi CG, Zimmerman RD et al (2000) Diffusion changes in the aging human brain; AJNR Am J Neuroradiol 21:1078–1083

    PubMed  CAS  Google Scholar 

  • Cwik VA, Hanstock CC, Allen PS et al (1998) Estimation of brainstem neuronal loss in amyotrophic lateral sclerosis with in vivo proton magnetic resonance spectroscopy. Neurology 50:72–77

    PubMed  CAS  Google Scholar 

  • Davie CA, Barker GJ, Webb S et al (1995) Persistent functional deficit in multiple sclerosis and autosomal dominant cerebellar ataxia is associated with axonal loss. Brain 118:1583–1592

    PubMed  Google Scholar 

  • De Leeuw FE, Barkhof F, Scheltens P (2004) White matter lesions and hippocampal atrophy in Alzheimer’s disease. Neurology 62:310–312

    PubMed  Google Scholar 

  • Della Nave R, Foresti S, Tessa C et al (2004) ADC mapping of neurodegeneration in the brainstem and cerebellum of patients with progressive ataxias. NeuroImage (in press)

    Google Scholar 

  • Dixon RM, Bradley KM, Budge MM et al (2002) Longitudinal quantitative proton magnetic resonance spectroscopy of the hippocampus in Alzheimer’s disease. Brain 125:2332–2341

    Article  PubMed  Google Scholar 

  • Dong Q, Welsh RC, Chevenert TL et al (2004) Clinical applications of diffusion tensor imaging. J Magn Reson Imaging 19:6–18

    Article  PubMed  Google Scholar 

  • Ellis CM, Simmons A, Jones DK et al (1999) Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 53:1051–1058

    PubMed  CAS  Google Scholar 

  • Ernst T, Chang L, Melchor R (1997) Frontotemporal dementia and early Alzhiemer’s disease: differentiation with frontal lobe H1 MR spectroscopy. Radiology 203:829–836

    PubMed  CAS  Google Scholar 

  • Fazekas F, Chawluk JB, Alavi A et al (1987) MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJNR Am J Neuroradiol 8:421–426

    Google Scholar 

  • Frisoni GB, Testa C, Zorzan A et al (2002) Detection of grey matter loss in mild Alzheimer’s disease with voxel based morphometry. J Neurol Neurosurg Psychiatry 73:657–664

    Article  PubMed  CAS  Google Scholar 

  • Giuffrida S, Saponara R, Restivo DA et al (1999) Supratentorial atrophy in spinocerebellar ataxia type 2: MRI study of patients. J Neurol 246:383–388

    Article  PubMed  CAS  Google Scholar 

  • Goodin DS, Rowley HA, Olney RK (1988) Magnetic resonance imaging in amyotrophic lateral sclerosis. Ann Neurol 23:418–420

    Article  PubMed  CAS  Google Scholar 

  • Hanyu H, Sakurai H, Iwamoto T et al (1998) Diffusion-weighted MR imaging of the hippocampus and temporal lobe white matter in Alzheimer’s disease. J Neurol Sci 156:195–200

    Article  PubMed  CAS  Google Scholar 

  • Hanyu H, Asano T, Sakurai H et al (1999) Diffusion-weighted and magnetization transfer imaging of the corpus callosum in Alzheimer’s disease. J Neurol Sci 167:37–44

    Article  PubMed  CAS  Google Scholar 

  • Hecht MJ, Fellner F, Fellner C et al (2001) MRI-FLAIR images of the head show corticospinal tract alterations in ALS patients more frequently than T2, T1-and proton density-weighted images. J Neurol Sci 186:37–44

    Article  PubMed  CAS  Google Scholar 

  • Hecht MJ, Fellner F, Fellner C et al (2002) Hyperintense and hypointense MRI signals of the precentral gyrus and corticospinal tract in ALS: a follow-up examination including FLAIR images. J Neurol Sci 199:59–65

    Article  PubMed  Google Scholar 

  • Jack CR, Dickson DW, Parisi JE et al (2002) Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58:750–757

    PubMed  Google Scholar 

  • Jessen F, Block W, Traber F et al (2001) Decrease of N-acetylaspartate in the MTL correlates with cognitive decline of AD patients. Neurology 57:930–932

    PubMed  CAS  Google Scholar 

  • Kalra S, Cashman NR, Genge A et al (1998) Recovery of N-acetylasparetate in corticomotor neurons of patients with ALS after riluzole therapy. Neuroreport 9:1757–1761

    PubMed  CAS  Google Scholar 

  • Kalra S, Cashman NR, Caramanos et al (2003) Gabapentin therapy for amyotrophic lateral sclerosis: lack of improvement in neuronal integrity shown by MR spectroscopy. AJNR Am J Neuroradiol 24:476–480

    PubMed  Google Scholar 

  • Kantarci K, Reynolds G, Petersen RC et al (2003) Proton MR spectroscopy in mild cognitive impairment and Alzheimer’s disease: comparison of 1.5 and 3 T. AJNR Am J Neuroradiol 24:843–849

    PubMed  Google Scholar 

  • Karas GB, Burton EJ, Rombouts SARB et al (2003) A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. Neuroimage 18:895–907

    Article  PubMed  CAS  Google Scholar 

  • Kato Y, Matsumura K, Kinosada Y et al (1997) Detection of pyramidal tract lesions in amyotrophic lateral sclerosis with magnetization-transfer measurements. AJNR Am J Neuroradiol 18:1541–1547

    PubMed  CAS  Google Scholar 

  • Klockgether T, Skalej M, Wedekind D et al (1998) Autosomal dominant cerebellar ataxia type I. MRI-based volumetry of posterior fossa structures and basal ganglia in spinocerebellar ataxia types 1, 2 and 3. Brain 121:1678–1693

    Google Scholar 

  • Kril JJ, Patel S, Harding AJ et al (2002) Patients with vascular dementia due to microvascular pathology have significant hippocampal neuronal loss. J Neurol Neurosurg Psychiatry 72:747–751

    Article  PubMed  CAS  Google Scholar 

  • Krishnan KRR, Charles HC, Doraiswamy PM et al (2003) Randomized, placebo-controlled trial of the effects of Donezepil on neuronal markers and hippocampal volumes in Alzheimer’s disease. Am J Psychiatry 160:2003–2011

    Article  PubMed  Google Scholar 

  • Lowe J (1998) Establishing a pathological diagnosis in degenerative dementias. Brain Pathol 8:403–406

    PubMed  CAS  Google Scholar 

  • Lowe J, Lennox G, Leigh PN (1997) Disorders of movement and system degeneration. In: Graham DL, Lantos PL (eds) Green field’s neuropathology, 6th edn, vol 2. Arnold, London, pp 281–366

    Google Scholar 

  • Marti-Fabregas J, Pujol J (1990) Selective involvement of the pyramidal tract on magnetic resonance imaging in primary lateral sclerosis. Neurology 40:1799–1800

    PubMed  CAS  Google Scholar 

  • Mascalchi M, Salvi F, Piacentini S et al (1994) Friedreich ’s ataxia: MR findings involving the cervical portion of the spinal cord. AJR 163: 187–191

    PubMed  CAS  Google Scholar 

  • Mascalchi M, Salvi F, Valzania F et al (1995) Cortico-spinal tract degeneration in motor neuron disease: report of two cases. AJNR Am J Neuroradiol 16:878–880

    PubMed  CAS  Google Scholar 

  • Mascalchi M, Tosetti M, Plasmati R et al (1998) Proton magnetic resonance spectroscopy in an Italian family with spinocerebellar ataxia type 1. Ann Neurol 43:244–252

    Article  PubMed  CAS  Google Scholar 

  • Mascalchi M Cosottini M, Lolli F et al (2002) MR spectroscopy of the cerebellum and pons in patients with degenerative ataxia. Radiology 223:371–378

    PubMed  Google Scholar 

  • McGowan FC, Filippi M, Campi A (1998) Magnetization transfer imaging: theory and application to multiple sclerosis. J Neurol Neurosurg Psychiatry 64[Suppl]:23–32

    Google Scholar 

  • Pioro EP, Majors AW, Mitsumoto H et al (1999) 1H-MRS evidence of neurodegeneration and excess glutamate+glutamine in ALS medulla. Neurology 53:71–79

    PubMed  CAS  Google Scholar 

  • Ormerod IEC, Harding AE, Miller DH et al (1994) Magnetic resonance imaging in ataxic disorders. J Neurol Neurosurg Psychiatry 57:51–57

    Article  PubMed  CAS  Google Scholar 

  • O’sullivan M, Jones DK, Summers PE et al (2001) Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology 57:632–638

    PubMed  CAS  Google Scholar 

  • Rapaport SI (2002) Hydrogen magnetic resonance spectroscopy in Alzheimer’s disease. Lancet Neurol 1:82

    Google Scholar 

  • Rose SE, Chen F, Chalk JB et al (2000) Loss of connectivity in Alzheimer’s disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatry 69:528–530

    Article  PubMed  CAS  Google Scholar 

  • Rusinek H, de Santi S, Frid D et al (2003) Regional brain atrophy rate predicts future cognitive decline: 6-year longitudinal MR imaging study of normal aging. Radiology 229:691–696

    PubMed  Google Scholar 

  • Sach M, Winkler G, Glauche V et al (2004) Diffusion tensor MRI of early upper motor neuron involvement in amyotrophic lateral sclerosis. Brain 127:340–350

    Article  PubMed  Google Scholar 

  • Sarchielli P, Pelliccioli GP, Tarducci R et al (2001) Magnetic resonance imaging and 1H magnetic resonance spectroscopy in amyotrophic lateral sclerosis. Neuroradiology 43:189–197

    Article  PubMed  CAS  Google Scholar 

  • Savoiardo M, Grisoli M (2001) Imaging dementias. Eur Radiol 11:484–492

    Article  PubMed  CAS  Google Scholar 

  • Savoiardo M, Strada L, Girotti F et al (1990) Olivopontocerebellar atrophy: MR diagnosis and relationship to multi-system atrophy. Radiology 174:693–696

    PubMed  CAS  Google Scholar 

  • Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    PubMed  CAS  Google Scholar 

  • Scheltens P, Barkof F, Algra J et al (1990) White matter hypeintensities on magnetic resonance in Alzheimer’s disease and normal aging. Neurobiol Aging 11:263–264

    Google Scholar 

  • Schuff N, Capizzano AA, Du AT et al (2002) Selective reduction of N-acetylaspartate in medial temporal and parietal lobes in AD. Neurology 58:928–935

    PubMed  CAS  Google Scholar 

  • Shonk TK, Moats RA, Gifford P et al (1995) Probable Alzheimer’s disease: diagnosis with proton MR spectroscopy. Radiology 195:65–72

    PubMed  CAS  Google Scholar 

  • Sjobeck M, Haglund M, Persson A et al (2003) Brain tissue microarrays in dementia research: white matter microvascular pathology in Alzheimer’s disease. Histopathology 23:290–295

    Google Scholar 

  • Subramony SH, Filla A (2001) —Autosomal dominant spinocerebellar ataxia ad infinitum? Neurology 56:287–289

    PubMed  CAS  Google Scholar 

  • Suhy J, Miller RG, Rule R et al (2002) Early detection and longitudinal changes in amyotrophic lateral sclerosis by 1H MRSI. Neurology 58:773–779

    PubMed  CAS  Google Scholar 

  • The Lund and Manchester Groups (1994) Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 57:416–418

    Google Scholar 

  • Ulug AM, Grunewald T, Lin MT et al (2004) Diffusion tensor imaging in the diagnosis of primary lateral sclerosis. J Magn Reson Imaging 19:34–39

    Article  PubMed  Google Scholar 

  • Van Buchem MA (1999) Magnetization transfer: applications in neuroradiology. J Comput Assist Tomogr 23[Suppl 1]: S9–S18

    PubMed  Google Scholar 

  • Van der Flier WM, van den Heuvel DMJ, Weverling-Rijnsburger AWE et al (2002) Cognitive decline in AD and mild cognitive impairment is associated with global brain damage. Neurology 59:874–879

    Google Scholar 

  • Waldman AD, Rai GS (2003) The relationship between cognitive impairment and in vivo metabolite ratios in patients with clinical Alzheimer’s disease and vascular dementia: a proton magnetic resonance spectroscopy study. Neuroradiology 45:507–512

    PubMed  CAS  Google Scholar 

  • Wullner U, Klockgether T, Petersen D (1993) Magnetic resonance imaging in hereditary and idiopathic ataxia. Neurology 43:318–326

    PubMed  CAS  Google Scholar 

  • Zhang L, Ulug AM, Zimmerman RD et al (2003) The diagnostic utility of FLAIR imaging in clinically verified amyotrophic lateral sclerosis. J Magn Reson Imaging 17:521–527

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mascalchi, M. (2005). Neurodegenerative Diseases with Associated White Matter Pathology. In: Filippi, M., De Stefano, N., Dousset, V., McGowan, J.C. (eds) MR Imaging in White Matter Diseases of the Brain and Spinal Cord. Medical Radiology Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27644-0_26

Download citation

  • DOI: https://doi.org/10.1007/3-540-27644-0_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40230-5

  • Online ISBN: 978-3-540-27644-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics