Skip to main content

Part of the book series: Medical Radiology Diagnostic Imaging ((Med Radiol Diagn Imaging))

Conclusion

MR imaging is the first imaging modality to be able to demonstrate the morphological and structural changes in the maturing brain, in the fetus, and in the term-born infant. The fetal brain cellularity first and later, the mass production on myelin with its effects on T1 and the T2, produce age-specific images that make it possible to evaluate the course of brain maturation. This evaluation has opened new diagnostic avenues, since the sensitivity of the oligodendrocytes to injury, as well as the involvement of myelin in numerous pathologic processes, make the evaluation of maturation an essential element of the imaging approach to the pathology. However, there are a few restrictions to be remembered. T1 and T2 images reflect two different things, not necessarily parallel, and should be used as such. Conventional MR images are composite, non-quantitative images, reflecting only the myelination of diverse areas relative to others: it is therefore a biased picture during the entire course of development. This image is technology-dependent, and pictures are not necessarily exactly comparable from one center to the other. Also, MR imaging is blind to the development, and to slight myelin anomalies, that occur after infancy. Finally, the signal in the images equates to the degree of myelination only in normal subjects, as a “high T2”, or a “low T1” signal are not specific, reflecting only the relative concentration of myelin and water, regardless of the mechanism, be it for example an increase of water (edema), or a loss of axons (hence also of myelin). Nevertheless, bearing these restrictions in mind not to “over-read” the images, MRI is an efficient tool, that has allowed a completely new view of brain pathologies in the fetus and the developing infant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashikaga R, Araki Y, Ono Y, Nishimura Y, Ishida O (1999) Appearance of normal brain maturation on fluid attenuated inversion-recovery (FLAIR) MR images. AJNR 20:427–431

    PubMed  CAS  Google Scholar 

  • Barkovich AJ (1998) MR of the normal neonatal brain: assessment of deep structures. AJNR 19:1397–1403

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Kjos BO, Jackson DE Jr, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5T. Radiology 166:173–180

    PubMed  CAS  Google Scholar 

  • Barkovich AJ, Kuzniecky RI, Jckson GD, Guerrini R, Dobyns WB (2001) Classification system for malformations of cortical development. Update 2001. Neurology 57:2168–2178

    PubMed  CAS  Google Scholar 

  • Barres BA (1999) A new role for glia: generation of neurons. Cell 97:667–670

    Article  PubMed  CAS  Google Scholar 

  • Battin M, Rutherford MA (2002) Magnetic resonance imaging of the brain in preterm infants: 24 weeks’ gestation to term. In Rutherford M (ed) MRI of the neonatal brain. Saunders, London, pp 25–49

    Google Scholar 

  • Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927

    PubMed  CAS  Google Scholar 

  • Bird C, Hedberg M, Drayer BP et al (1989) MR assessment of myelination in infants and children: usefulness of marker sites. AJNR 10:731–740

    PubMed  CAS  Google Scholar 

  • Brody BA, Kinney HC, Kloman AS, Gilles FH (1987) Sequence of central nervous system myelination in human infancy. I. An autopsy study of myelination. J Neuropathol Exp Neurol 46:283–301

    PubMed  CAS  Google Scholar 

  • Caviness VS, Takahashi T, Nowakowski RS (1995) Numbers, time and neocortical neurogenesis: a general developmental and evotionary model. Trends Neurosci 18:379–383

    Article  PubMed  CAS  Google Scholar 

  • Chabrol B, Raybaud C (2002) Inborn and acquired mitochondrial leucodystrophies. In Desnuelles C, di Mauro S (eds) Mitochondrial disorders. Springer, Berlin Heidelberg New York, pp 221–229

    Google Scholar 

  • Childs AM, Ramenghi LA, Evans DJ, Ridgeway J, Saysell M, Martinez D, Arthur R, Tanner S, Levine MI (1998) MR features of developing periventricular white matter in preterm infants: evidence of glial cell migration. AJNR 19:971–976

    PubMed  CAS  Google Scholar 

  • Christophe C, Muller MF, Balériaux D et al (1990) Mapping of normal brain maturation in infants on phase-sensitive inversion-recovery images. Neuroradiology 32:173–178

    Article  PubMed  CAS  Google Scholar 

  • Couly GF, Le Douarin NM (1987) Mapping of the early neural primordium in Quail-chick chimeras. II. The prosencephalic neural plate and neural folds: implications for the genesis of cephalic human congenital abnormalities. Dev Biol 120:198–214

    Article  PubMed  CAS  Google Scholar 

  • Fees-Higgins A, Larroche JC (1987) Development of the human fetal brain. An anatomical atlas. INSERM/Masson, Paris

    Google Scholar 

  • Fralix TA, Ceckler TL, Wolff SD et al (1991) Lipid bilayer and water proton magnetization transfer: effect of cholesterol. Magn Reson Med 18:214–223

    PubMed  CAS  Google Scholar 

  • Girard N, Raybaud C, du Lac P (1991) MRI study of brain myelination. J Neuroradiol 18:320–332

    PubMed  CAS  Google Scholar 

  • Girard N, Raybaud C, Poncet M (1995) In vivo MR study of brain mayuration in normal fetuses. AJNR 16: 407–413

    PubMed  CAS  Google Scholar 

  • Gressens P, Richelme C, Kadhim HJ, Gadisseux JF, Evrard P (1992) The germinative zone produces the most cortical astrocytes after neuronal migration in the developing mammalian brain. Biol Neonate 61:4–24

    PubMed  CAS  Google Scholar 

  • Heershap A, Kok RD, van den Berg PP (2003) Antenatal proton MR spectroscopy of the human brain in vivo. Childs Nerv Syst 19:418–421

    Google Scholar 

  • Holland BA, Haas DK, Norman D, Brant-Zawadski M, Newton TH (1986) MRI of normal brain maturation. AJNR 7:201–208

    PubMed  CAS  Google Scholar 

  • Holms GL (1986) Morphological and physiological maturation of the brain in the neonate and young child. J Clin Neurophysiol 3:209–238

    Google Scholar 

  • Hüppi PS, Warfield S, Kikinis R, Barnes PD, Zientara GP, Jolesz FA, Tsuji MK, Volpe JJ (1998a) Quantitative magnetic resonance imaging of brain development in premature and mature newborns. Ann Neurol 43:224–235

    PubMed  Google Scholar 

  • Hüppi PS, Maier SE, Peled S, Zientara GP, Barnes PD, Jolesz FA, Volpe JJ (1998b) Microstructural development of human newborn cerebral white matter assessed in vivo by diffusion tensor magnetic resonance imaging. Pediatr Res 44:584–590

    PubMed  Google Scholar 

  • Huttenlocher PR (1990) Morphometric study of human cebral cortex development. Neuropsychologia 28:517–527

    Article  PubMed  CAS  Google Scholar 

  • Kastler B, Vetter D, Patay Z, Germain P (2001) Comprendre l’IRM, 4th edn. Masson, Paris

    Google Scholar 

  • Kinney HC, Brody BA, Kloman AS, Gilles FH (1988) Sequence of central nervous system myelination in human infancy. II. Patterns of myelination in autopsied infants. J Neuropathol Exp Neurol 47:217–234

    PubMed  CAS  Google Scholar 

  • Koenig SH (1991) Cholesterol of myelin is the determinant of gray-white contrast in MRI of the brain. Magn Reson Med 20:285–291

    PubMed  CAS  Google Scholar 

  • Kostovic I, Rakic P (1990) Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain. J Comp Neurol 297:441–470

    Article  PubMed  CAS  Google Scholar 

  • Kostocic I, Judas M, Rados M, Hrabac P (2002) Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cerebral Cortex 12:536–544

    Google Scholar 

  • Kucharczyk W, MacDonald P, Stanisz G, Henkelman RM (1994) Relaxivity and magnetization transfer of white matter lipids at MR imaging: importance of cerebrosides and pH. Radiology 192:521–529

    PubMed  CAS  Google Scholar 

  • Lavdas AA, Grigoriou M, Pachnis V, Parnavelas JG (1999) The medial ganglionic eminence gives rise to a population of early neurons in the developing cerebral cortex. J Neurosci 99:7881–7888

    Google Scholar 

  • Le Bihan, D, Breton E, Lallemand D, Grenier P, Cabanis E, Laval-Jeantet M (1986) MR imaging of intravoxel incoherent motion: applications to diffusion and perfusion in neurologic disorders. Radiology 161:401–407

    PubMed  Google Scholar 

  • Letinic K, Rakic P (2001) Telencephalic origin of human thalamic GABAergic neurons. Nature Neurosci 4: 931–936

    Article  PubMed  CAS  Google Scholar 

  • Marin-Padilla M (1998) Cajal-Retzius cells and the development of the neocortex. Trends Neurosci 21:64–71

    Article  PubMed  CAS  Google Scholar 

  • Martin E, Krassnitzer S, Kaelin P, Boesch C (1991) MR imaging of the brainstem: normal postnatal development. Neuroradiology 33:391–395

    Article  PubMed  CAS  Google Scholar 

  • McConnell SK (1995) Constructing the cerebral cortex: neurogenesis and fate determination. Neuron 15: 761–768

    Article  PubMed  CAS  Google Scholar 

  • McLone DG, Knepper PA (1989) The cause of Chiari II malformation. A unified theory. Pediatr Neurosci 15: 1–12

    Article  PubMed  CAS  Google Scholar 

  • Meyer G, Schaaps JP, Moreau L, Goffinet AM (2000) Embryonic and early fetal development of the human neocortex J Neurosci 20:1858–1868

    PubMed  CAS  Google Scholar 

  • Murakami JW, Weinberger E, Shaw DWW (1999) Normal myelination of the pediatric brain imaged with fluid attenuated inversion-recovery (FLAIR) MR imaging. AJNR 20:1406–1411

    PubMed  CAS  Google Scholar 

  • Nadarajh B, Parnavelas JG (2002) Modes of neuronal migration in the developing cerebral cortex. Nature Rev Neurosci 3:423–432

    Google Scholar 

  • Pierpaoli C, Jezzard P, Basser P, Barnett A, di Chiro G (1996) Diffusion tensor MR imaging of the human brain. Radiology 201:637–648

    PubMed  CAS  Google Scholar 

  • Rakic P (1995) A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolutiobn. Trends Neurosci 18:383–338

    Article  PubMed  CAS  Google Scholar 

  • Raybaud C (1982) Cystic malformations of the posterior fossa. Abnormalities of the development of the roof of the 4th ventricle and adjacent meningeal structures. J Neuroradiol 9:103–133

    PubMed  CAS  Google Scholar 

  • Raybaud C (1990) Development of the arterial supply to the brain tissue. In: Lasjaunias P, Berenstein A (eds) Surgical neuro-angiography. 3. Functional vascular anatomy of brain, spinal cord and spine. Springer, Berlin Heidelberg New York, pp 1–13

    Google Scholar 

  • Raybaud C, Girard N (1998) Etude anatomique par IRM des agénésies commissurales té lencéphaliques. Corrélations cliniques et interpétation morphogénétique. Neurochirurgie (Paris) 44[Suppl 1]:38–60

    CAS  Google Scholar 

  • Romer AS, Parsons TS (1977) The vertebrate body, 5th edn. Saunders, Philadelphia

    Google Scholar 

  • Sidman RL, Rakic P (1973) Neuronal migration, with special reference to developing human brain: a review. Brain Res 62:1–35

    Article  PubMed  CAS  Google Scholar 

  • Sie LTL, van der Knaap MS, van Wezl-Meijler G, Valk J (1997) MRI assessment of myelination of motor and sensory pathways in the brain of preterm and term-born infants. Neuropediatrics 28:97–105

    PubMed  CAS  Google Scholar 

  • Steen RG, Ogg RJ, Reddick WE, Kingsley PB (1997) Age-related changes in the pediatric brain: quantitative MR evidence of maturational changes during adolescence. AJNR 18:819–828

    PubMed  CAS  Google Scholar 

  • Super H, Soriano E, Uylings HB (1998) The functions of the preplate in development and evolution of the neocortex and hippocampus. Brain Res Rev 27:40–64

    PubMed  CAS  Google Scholar 

  • Tamamaki N, Nakamura K, Okamoto K, Kaneko T (2001) Radial glia is a progenitor of neocortical neurons in the developing cerebral cortex. Neurosci Res 41:51–60

    Article  PubMed  CAS  Google Scholar 

  • Van der Knaap MS, Valk J (1990) MR imaging of the various stages of normal myelination during the first year of life. Neuroradiology 31:459–470

    Article  PubMed  Google Scholar 

  • Van der Knaap MS, Valk J, de Neeling N, Nauta JJP (1991) Pattern recognition in magnetic resonance imaging of white matter disorders in children and young adults. Neuroradiology 33:478–493

    PubMed  Google Scholar 

  • Van der Knaap MS, van Wezel-Meijler G, Barth PG, Barkhof F, Ader HJ, Valk J (1996) Normal gyration and sulcation in preterm and term neonates: appearance on MR images. Radiology 200:389–396

    PubMed  Google Scholar 

  • Van Essen D (1997) A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature 385:313–318

    Article  PubMed  Google Scholar 

  • Wimberger DM, Roberts TP, Barkovich AJ et al (1995) Identification of “premyelination” by diffusion weighted MRI. J Comput Assist Tomogr 19:28–33

    PubMed  CAS  Google Scholar 

  • Xie Y, Skinner, Landry C, Handley V, Schonmann V, Jacobs E, Fisher R, Campagnoni A (2002) Influence of the embryonic preplate on the organization of the cerebral cortex: a targeted ablation model. J Neurosci 22: 8981–8991

    PubMed  CAS  Google Scholar 

  • Yakovlev PI, Lecours AR (1966) The myelinogenic cycles of regional maturation of the brain. In: Minkovski A (ed) Regional development of the brain in early life. Blackwell, Oxford, UK, pp 3–70

    Google Scholar 

  • Zhu Y, Li HS, Zhou L, Wu JY, Rao Y (1999) Cellular and molecular guidance of GABAergic neuronal migration from an extracortical origin to the neocortex. Neuron 23:473–485

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Raybaud, C. (2005). MR Imaging of Brain Development. In: Filippi, M., De Stefano, N., Dousset, V., McGowan, J.C. (eds) MR Imaging in White Matter Diseases of the Brain and Spinal Cord. Medical Radiology Diagnostic Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27644-0_11

Download citation

  • DOI: https://doi.org/10.1007/3-540-27644-0_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-40230-5

  • Online ISBN: 978-3-540-27644-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics