Skip to main content

Two-Dimensional Compressible Turbulent Flows

  • Chapter
  • 2256 Accesses

Abstract

As in Chapter 6, we begin with the statement that the main difference between laminar flows and turbulent flows is that the effective diffusivities in turbulent flow are unknown. In Chapter 6 the temperature differences were small enough not to affect the mean velocity field, and it was assumed without explicit comment that the fluctuating velocity field, which controls the turbulent transport of momentum, heat, or mass, was also unaffected.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cebeci, T.: Analysis of Turbulent Flows. Elsevier, London, 2004.

    Google Scholar 

  2. Cousteix, J., Houdeville, R. and Michel, R.: Couches limites turbulentes avec transfert de chaleur. La Rech. Aérosp., 1974–6, 1974.

    Google Scholar 

  3. Aupoix, B. and Viala, S.: Compressible turbulent boundary layer modelling. In: Kral, L.D., Spina, E. F. and Arakawa, C., eds., Transitional and Turbulent Compressible Flows, Vol. 224, pp. 139–146, ASME, Hilton Head Island, 1995.

    Google Scholar 

  4. Van Driest, E. R.: Turbulent boundary layer in compressible fluids. J. Aeronaut. Sci. 18(3), 145–160 and 216, 1951.

    MathSciNet  Google Scholar 

  5. Catris, S. and Aupoix, B.: Density corrections for turbulence models. Aerosp. Sci. Technol. 4, 1–11, 2000

    Article  MATH  Google Scholar 

  6. Rotta, J.C.: Turbulent boundary layers with heat transfer in compressible flow. AC-ARD Rept. 281, 1960.

    Google Scholar 

  7. Fernholz, H. H.: Ein halbempirisches Gesetz für die Wandreibung in kompressiblen turbulenten Grenzschichten bei isothermer and adiabater Wand. Z. Angew. Math. u. Mech. 51, T146, 1971.

    Google Scholar 

  8. Spalding, D.B. and Chi, S.W.: The drag of a compressible turbulent boundary layer on a smooth flat plate with and without heat transfer. J. Fluid Mech. 18, 117, 1964.

    Article  MATH  ADS  Google Scholar 

  9. Hopkins, E.J. and Keener, E. R.: Pressure gradient effects on hypersonic turbulent skin-friction and boundary-layer profiles. AIAA J. 10, 1141, 1972.

    Article  ADS  Google Scholar 

  10. Cary, A. M. and Bertram, M. H.: Engineering prediction of turbulent skin friction and heat transfer in high-speed flow. NASA TN D-7507, 1974.

    Google Scholar 

  11. Cary, A. M.: Summary of available information on Reynolds analogy for zero-pressure gradient, compressible turbulent-boundary-layer flow. NASA TN D-5560, 1970.

    Google Scholar 

  12. Goddard, F. E., Jr.: Effect of uniformly distributed roughness on turbulent skin-friction drag at supersonic speeds. J. Aero/Space Sci. 26, 1–15, 1959.

    MATH  Google Scholar 

  13. Fenter, F.W.: The effect of heat transfer on the turbulent skin-friction of uniformly rough surfaces in compressible flow. The University of Texas, Defense Research Lab Rept. DLR-368, CM-839, April 1956.

    Google Scholar 

  14. Adamson, T. C. and Messiter, A. F.: Analysis of two-dimensional interactions between shock waves and boundary layers. Ann. Rev. Fluid Mech. 12, 103–138, Annual Reviews, Palo Alto, 1980.

    Google Scholar 

  15. Délery, J.: Shock phenomena in high speed aerodynamics: still a source of major concern. Lancaster Lecture, The Aeronautical Journal of the Royal Aeronautical Society, Jan. 1999.

    Google Scholar 

  16. Délery, J.: Shock wave / boundary-layer interactions. In: Handbook of Shock Waves, Ben-Dor, D., Igra, O., Elperim, T., eds., Academic Press, 2001.

    Google Scholar 

  17. Computation of Viscous-Inviscid Interactions. AGARD Conf. Proceedings No. 291, 1981.

    Google Scholar 

  18. Law, C.H.: Supersonic turbulent boundary-layer separation. AIAA J. 12, 1974.

    Google Scholar 

  19. Roshko, A. and Thomke, G. J.: Supersonic turbulent boundary-layer interaction with a compression corner at very high Reynolds number. Proc. Symposium on Viscous Interaction Phenomena in Supersonic Hypersonic Flow, USAF Aerospace Research Labs., Wright-Patterson AFB, Ohio, Univ. of Dayton Press, May 1969.

    Google Scholar 

  20. Hayakawa, K. and Squire, L.C.: The effect of the upstream boundary-layer state on the shock interaction at a compression corner. J. Fluid Mech. 122, 369, 1982.

    Article  ADS  Google Scholar 

  21. Lighthill, M. J.: On boundary layers and upstream influence, II. Supersonic flow without separation. Proc. Royal Soc. A 217, 1953.

    Google Scholar 

  22. Inger, G. R.: Nonasymptotic theory of unseparated turbulent boundary-layer-shock-wave interaction with application to transonic flows. In: Numerical and Physical Aspects of Aerodynamic Flows, Cebeci, T., ed., p. 159, Springer, New York, 1982.

    Google Scholar 

  23. Viegas, J. R. and Horstmann, C. C.: Comparison of multiequation turbulence models for several shock boundary-layer interaction flows. AIAA J. 17, 811–820, 1979.

    Article  ADS  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Horizons Publishing Inc., Long Beach, California

About this chapter

Cite this chapter

(2005). Two-Dimensional Compressible Turbulent Flows. In: Modeling and Computation of Boundary-Layer Flows. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27624-6_12

Download citation

Publish with us

Policies and ethics