Advertisement

Combinatorial Descriptions

Chapter
  • 3.2k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 231)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. [19]
    R. Bédard, Cells for two Coxeter groups, Commun. Algebra 14 (1986), 1253–1286. [293]zbMATHGoogle Scholar
  2. [62]
    A. Björner, F. Brenti, Affine permutations of type A, Electron. J. Combin. 3 (1996), no. 2, #R18. [242, 293, 294]Google Scholar
  3. [223]
    H. Eriksson, Computational and combinatorial aspects of Coxeter groups, Ph.D. Thesis, KTH, Stockholm, Sweden, 1994. [88, 125, 130, 294]Google Scholar
  4. [224]
    H. Eriksson, K. Eriksson, Affine Weyl groups as infinite permutations. Electron. J. Combin. 5 (1998), no. 1, #R18, 32 pp. [208, 242, 294]Google Scholar
  5. [311]
    F. Incitti, Bruhat order on classical Weyl groups: minimal chains and covering relation, European J. Combin. 26 (2005), 729–753. [64, 294]zbMATHMathSciNetCrossRefGoogle Scholar
  6. [365]
    G. Lusztig, Some examples of square integrable representations of semisimple p-adic groups, Trans. Amer. Math. Soc. 277 (1983), 623–653. [293]zbMATHMathSciNetCrossRefGoogle Scholar
  7. [423]
    R. A. Proctor, Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982), 104–126. [294]zbMATHMathSciNetCrossRefGoogle Scholar
  8. [455]
    J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lect. Notes in Math. 1179, Springer, Berlin, 1986. [200, 293]Google Scholar
  9. [467]
    J.-Y. Shi, The verification of a conjecture on left cells of certain Coxeter groups, Hiroshima Math. J. 24 (1994), 627–646. [293]zbMATHMathSciNetGoogle Scholar
  10. [491]
    R. P. Stanley, Weyl groups, the hard Lefschetz theorem, and the Sperner property, SIAM J. Algebra Discrete Methods 1 (1980), 168–184. [239, 294]zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations