Advertisement

Enumeration

Chapter
  • 3.2k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 231)

Keywords

Toric Variety Coxeter Group Real Zero Corner Cell Eulerian Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. [1]
    R. Adin, F. Brenti, Y. Roichman, Descent numbers and major indices for the hyperoctahedral group, Adv. Appl. Math. 27 (2001), 210–224. [243]MathSciNetCrossRefGoogle Scholar
  2. [18]
    H. Barcelo, A. Goupil, Non-broken circuits of reflection groups and factorization in D n. Israel J. Math. 91 (1995), 285–306. [242]MathSciNetzbMATHGoogle Scholar
  3. [44]
    S. Billey, M. Haiman, Schubert polynomials for the classical groups, J. Amer. Math. Soc. 8 (1995), 443–482. [232, 244]MathSciNetCrossRefzbMATHGoogle Scholar
  4. [48]
    S. Billey, T. K. Lam, Vexillary elements in the hyperoctahedral group, J. Algebraic Combin. 8 (1998), 139–152. [243]MathSciNetCrossRefzbMATHGoogle Scholar
  5. [62]
    A. Björner, F. Brenti, Affine permutations of type A, Electron. J. Combin. 3 (1996), no. 2, #R18. [242, 293, 294]Google Scholar
  6. [64]
    A. Björner, M. LasVergnas, B. Sturmfels, N. White, G. M. Ziegler, Oriented Matroids, Cambridge University Press, Cambridge, 1993. [243, 299, 306]zbMATHGoogle Scholar
  7. [67]
    A. Björner, M. Wachs, Generalized quotients in Coxeter groups, Trans. Amer. Math. Soc. 308 (1988), 1–37. [64, 242]MathSciNetCrossRefzbMATHGoogle Scholar
  8. [77]
    R. Bott, An application of the Morse theory to the topology of Lie-groups, Bull. Soc. Math. France 84 (1956), 251–281. [242]zbMATHMathSciNetGoogle Scholar
  9. [80]
    M. Bousquet-Mélou, K. Eriksson, Lecture hall partitions. Ramanujan J. 1 (1997), 101–111. [242]MathSciNetCrossRefzbMATHGoogle Scholar
  10. [86]
    F. Brenti, q-Eulerian polynomials arising from Coxeter groups, European J. Combin. 15 (1994), 417–441. [242, 243]zbMATHMathSciNetCrossRefGoogle Scholar
  11. [125]
    R. Charney, M. Davis, Reciprocity of growth functions of Coxeter groups, Geom. Dedicata 39 (1991), 373–378. [242]MathSciNetCrossRefzbMATHGoogle Scholar
  12. [133]
    C. Chevalley, Sur certains groupes simples, Tohoku Math. J. 7 (1955), 14–66. [242]zbMATHMathSciNetGoogle Scholar
  13. [140]
    R. J. Clarke, D. Foata, Eulerian calculus. I. Univariable statistics, European J. Combin. 15 (1994), 345–362. [243]MathSciNetCrossRefzbMATHGoogle Scholar
  14. [141]
    R. J. Clarke, D. Foata, Eulerian calculus. II. An extension of Han’s fundamental transformation, European J. Combin. 16 (1995), 221–252. [243]MathSciNetCrossRefzbMATHGoogle Scholar
  15. [142]
    R. J. Clarke, D. Foata, Eulerian calculus. III. The ubiquitous Cauchy formula, European J. Combin. 16 (1995), 329–355. [243]MathSciNetCrossRefzbMATHGoogle Scholar
  16. [191]
    I. Dolgachev, V. Lunts, A character formula for the representation of a Weyl group in the cohomology of the associated toric variety, J. Algebra, to appear. [243]Google Scholar
  17. [211]
    M. Dyer, On minimal lengths of expressions of Coxeter group elements as products of reflections, Proc. Amer. Math. Soc. 129 (2001), 2591–2595. [242]zbMATHMathSciNetCrossRefGoogle Scholar
  18. [217]
    P. H. Edelman, C. Greene, Combinatorial correspondences for Young tableaux, balanced tableaux, and maximal chains in the weak Bruhat order of S n, Combinatorics and Algebra (Boulder, 1983), Contemp. Math. 34, American Mathematical Society, Providence, RI, 1984, pp. 155–162. [243]Google Scholar
  19. [218]
    P. H. Edelman, C. Greene, Balanced tableaux, Adv. Math. 63 (1987), 42–99. [243]MathSciNetCrossRefzbMATHGoogle Scholar
  20. [224]
    H. Eriksson, K. Eriksson, Affine Weyl groups as infinite permutations. Electron. J. Combin. 5 (1998), no. 1, #R18, 32 pp. [208, 242, 294]Google Scholar
  21. [235]
    C. K. Fan, Schubert varieties and short braidedness, Transform. Groups 3 (1998), 51–56. [244]zbMATHMathSciNetCrossRefGoogle Scholar
  22. [236]
    C. K. Fan, J. R. Stembridge, Nilpotent orbits and commutative elements, J. Algebra 196 (1997), 490–498. [244]MathSciNetCrossRefzbMATHGoogle Scholar
  23. [243]
    D. Foata, G. N. Han, Calcul basique des permutations signées. I. Longueur et nombre d’inversions, Adv. Applied Math. 18 (1997), 489–509. [243]MathSciNetCrossRefzbMATHGoogle Scholar
  24. [246]
    S. Fomin, A. Kirillov, Reduced words and plane partitions. J. Algebraic Combin. 6 (1997), 311–319. [242]MathSciNetCrossRefzbMATHGoogle Scholar
  25. [247]
    S. Fomin, R. P. Stanley, Schubert polynomials and the nil-Coxeter algebra, Adv. Math. 103 (1994), 196–207. [242]MathSciNetCrossRefzbMATHGoogle Scholar
  26. [284]
    M. Haiman, Dual equivalence with applications, including a conjecture of Proctor, Discrete Math. 99 (1992), 79–113. [232, 242, 244]zbMATHMathSciNetCrossRefGoogle Scholar
  27. [330]
    W. Kraśkiewicz, Reduced decompositions in hyperoctahedral groups. C. R. Acad. Sci. Paris, Ser. I Math. 309 (1989), 903–907. [244]MathSciNetzbMATHGoogle Scholar
  28. [339]
    T. K. Lam, B and D analogues of stable Schubert polynomials and related insertion algorithms, Ph.D. Thesis, Massachusetts Institute of Technology, 1994. [244]Google Scholar
  29. [349]
    A. Lascoux, M.-P. Schützenberger, Structure de Hopf de l’anneau de cohomologie et de l’anneau de Grothendieck d’une variété de drapeaux. C. R. Acad. Sci. Paris Sér. I Math. 295 (1982), 629–633. [243]zbMATHGoogle Scholar
  30. [361]
    G. I. Lehrer, On the Poincaré series associated with Coxeter group actions on the complements of hyperplanes, J. London Math. Soc. 36 (1987), 275–294. [242]zbMATHMathSciNetGoogle Scholar
  31. [381]
    I. G. Macdonald, Notes on Schubert Polynomials, Publ. du LACIM 6, University du Québec, Montréal, 1991. [234, 242]Google Scholar
  32. [404]
    T. Oda, Convex Bodies and Algebraic Geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete 15, Springer-Verlag, Berlin Heidelberg, 1988. [243]zbMATHGoogle Scholar
  33. [429]
    A. Ram, Standard Young tableaux for finite root systems, preprint. [243]Google Scholar
  34. [433]
    V. Reiner, Quotients of Coxeter complexes and P-partitions, Mem. Amer. Math. Soc. 95 (1992), no. 460, vi+134 pp. [243]Google Scholar
  35. [434]
    V. Reiner, Signed posets, J. Combin. Theory Ser. A 62 (1993), 324–360. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  36. [435]
    V. Reiner, Signed permutation statistics, European J. Combin. 14 (1993), 553–567. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  37. [436]
    V. Reiner, Upper binomial posets and signed permutation statistics, European J. Combin. 14 (1993), 581–588. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  38. [437]
    V. Reiner, Signed permutation statistics and cycle-type, European J. Combin. 14 (1993), 569–579. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  39. [439]
    V. Reiner, The distribution of descent and length in a Coxeter group, Electron. J. Combin. 2 (1995), R25. [242]zbMATHMathSciNetGoogle Scholar
  40. [440]
    V. Reiner, Non-crossing partitions for classical reflection groups, Discrete Math. 177 (1997), 195–222. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  41. [443]
    V. Reiner, G. Ziegler, Coxeter associahedra, Mathematika 41 (1994), 364–393. [243]MathSciNetCrossRefzbMATHGoogle Scholar
  42. [453]
    J. P. Serre, Cohomologie des groupes discrets, Prospects in Mathematics, Ann. of Math. Studies, No. 70, Princeton University Press, Princeton, NJ, 1971, pp. 77–169. [242]Google Scholar
  43. [480]
    L. Solomon, The orders of the finite Chevalley groups, J. Algebra 3 (1966), 376–393. [242]zbMATHMathSciNetCrossRefGoogle Scholar
  44. [490]
    R. P. Stanley, Binomial posets, Möbius inversion, and permutation enumeration, J. Combin. Theory Ser. A 20 (1976), 336–356. [210, 242]zbMATHMathSciNetCrossRefGoogle Scholar
  45. [493]
    R. P. Stanley, On the number of reduced decompositions of elements of Coxeter groups, European J. Combin. 5 (1984), 359–372. [234, 242, 243, 244]zbMATHMathSciNetGoogle Scholar
  46. [501]
    R. Steinberg, Endomorphisms of Linear Algebraic Groups, Mem. Amer. Math. Soc. Nr. 80 (1968). [242]Google Scholar
  47. [502]
    E. Steingrimsson, Permutation statistics of indexed permutations, European. J. Combin. 15 (1994), 187–205. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  48. [503]
    J. R. Stembridge, Eulerian numbers, tableaux, and the Betti numbers of a toric variety, Discrete Math. 99(1992), 307–320. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  49. [504]
    J. R. Stembridge, On the action of a Weyl group on the cohomology of its associated toric variety, Adv. Math. 106 (1994), 244–301. [243]zbMATHMathSciNetCrossRefGoogle Scholar
  50. [505]
    J. R. Stembridge, On the fully commutative elements of Coxeter groups, J. Algebraic Combin. 5 (1996), 353–385. [244]zbMATHMathSciNetGoogle Scholar
  51. [506]
    J. R. Stembridge, Some combinatorial aspects of reduced words in finite Coxeter groups, Trans. Amer. Math. Soc. 349 (1997), 1285–1332. [244]zbMATHMathSciNetCrossRefGoogle Scholar
  52. [508]
    J. R. Stembridge, The enumeration of fully commutative elements of Coxeter groups, J. Algebraic Combin. 7 (1998), 291–320. [244]zbMATHMathSciNetCrossRefGoogle Scholar
  53. [531]
    L. Tan, On the distinguished coset representatives of the parabolic subgroups in finite Coxeter groups, Commun. Algebra 22 (1994), 1049–1061. [242]zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations