Skip to main content

Kazhdan-Lusztig representations

  • Chapter
  • 4012 Accesses

Part of the Graduate Texts in Mathematics book series (GTM,volume 231)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/3-540-27596-7_6
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-540-27596-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   79.99
Price excludes VAT (USA)
Hardcover Book
USD   119.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math. 52 (1984), 173–212. [88, 200]

    MATH  CrossRef  Google Scholar 

  2. A. Björner, Lecture Notes, MIT, 1985. [200]

    Google Scholar 

  3. P. Bromwich, Variations on a Theme of Solomon, Ph.D. thesis, University of Warwick, 1975. [200]

    Google Scholar 

  4. C. W. Curtis, The Hecke algebra of a finite Coxeter group, The Arcata Conference on Representations of Finite Groups, Proc. Symp. Pure Math. 47, part 1, American Mathematical Society, Providence, RI, 1987, pp. 51–60. [200]

    Google Scholar 

  5. A. M. Garsia, T. J. McLarnan, Relations between Young’s natural and the Kazhdan-Lusztig representations of Sn, Adv. Math. 69 (1988), 32–92. [200]

    MathSciNet  CrossRef  Google Scholar 

  6. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990. [4, 24, 123, 124, 126, 130, 132, 134, 136, 174, 175, 200, 205, 240]

    Google Scholar 

  7. D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184. [131, 170, 171, 173, 175, 188, 196, 200] pp. 175–176.

    MathSciNet  CrossRef  Google Scholar 

  8. S. V. Kerov, W-graphs of representations of symmetric groups, J. Sov. Math. 28 (1985), 596–605. [64, 193, 200]

    CrossRef  Google Scholar 

  9. A. Lascoux, M.-P. Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Astérisque 87–88 (1981), 249–266. [193, 200]

    Google Scholar 

  10. G. I. Lehrer, A survey of Hecke algebras and the Artin braid groups, Braids (Santa Cruz, CA, 1986), Contemp. Math. 78, American Mathematical Society, Providence, RI, 1988, pp. 365–385. [200]

    Google Scholar 

  11. G. Lusztig, Cells in affine Weyl groups, Algebraic Groups and Related Topics, Adv. Studies in Pure. Math. 6, North-Holland, Amsterdam, 1985, pp. 225–287. [198, 200]

    Google Scholar 

  12. G. Lusztig, Cells in affine Weyl groups II, J. Algebra 109 (1987), 536–548. [198, 200]

    MATH  MathSciNet  CrossRef  Google Scholar 

  13. A. Mathas, Some generic representations, W-graphs, and duality, J. Algebra 170 (1994), 322–353. [200]

    MATH  MathSciNet  CrossRef  Google Scholar 

  14. A. Mathas, A q-analogue of the Coxeter complex, J. Algebra 164 (1994), 831–848. [200]

    MATH  MathSciNet  CrossRef  Google Scholar 

  15. A. Mathas, On the left cell representations of Iwahori-Hecke algebras of finite Coxeter groups, J. London Math. Soc. 54 (1996), 475–488. [200]

    MATH  MathSciNet  Google Scholar 

  16. J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lect. Notes in Math. 1179, Springer, Berlin, 1986. [200, 293]

    Google Scholar 

  17. L. Solomon, A decomposition of the group algebra of a finite Coxeter group, J. Algebra 9 (1968), 220–239. [200]

    MATH  MathSciNet  CrossRef  Google Scholar 

  18. R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), 132–161. [200]

    MATH  MathSciNet  CrossRef  Google Scholar 

Download references

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Kazhdan-Lusztig representations. In: Combinatorics of Coxeter Groups. Graduate Texts in Mathematics, vol 231. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27596-7_6

Download citation