Advertisement

Kazhdan-Lusztig representations

Chapter
  • 3.2k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 231)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. [56]
    A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math. 52 (1984), 173–212. [88, 200]zbMATHCrossRefGoogle Scholar
  2. [57]
    A. Björner, Lecture Notes, MIT, 1985. [200]Google Scholar
  3. [105]
    P. Bromwich, Variations on a Theme of Solomon, Ph.D. thesis, University of Warwick, 1975. [200]Google Scholar
  4. [168]
    C. W. Curtis, The Hecke algebra of a finite Coxeter group, The Arcata Conference on Representations of Finite Groups, Proc. Symp. Pure Math. 47, part 1, American Mathematical Society, Providence, RI, 1987, pp. 51–60. [200]Google Scholar
  5. [254]
    A. M. Garsia, T. J. McLarnan, Relations between Young’s natural and the Kazhdan-Lusztig representations of Sn, Adv. Math. 69 (1988), 32–92. [200]MathSciNetCrossRefGoogle Scholar
  6. [306]
    J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990. [4, 24, 123, 124, 126, 130, 132, 134, 136, 174, 175, 200, 205, 240]Google Scholar
  7. [322]
    D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184. [131, 170, 171, 173, 175, 188, 196, 200] pp. 175–176.MathSciNetCrossRefGoogle Scholar
  8. [325]
    S. V. Kerov, W-graphs of representations of symmetric groups, J. Sov. Math. 28 (1985), 596–605. [64, 193, 200]CrossRefGoogle Scholar
  9. [347]
    A. Lascoux, M.-P. Schützenberger, Polynômes de Kazhdan & Lusztig pour les grassmanniennes, Astérisque 87–88 (1981), 249–266. [193, 200]Google Scholar
  10. [362]
    G. I. Lehrer, A survey of Hecke algebras and the Artin braid groups, Braids (Santa Cruz, CA, 1986), Contemp. Math. 78, American Mathematical Society, Providence, RI, 1988, pp. 365–385. [200]Google Scholar
  11. [367]
    G. Lusztig, Cells in affine Weyl groups, Algebraic Groups and Related Topics, Adv. Studies in Pure. Math. 6, North-Holland, Amsterdam, 1985, pp. 225–287. [198, 200]Google Scholar
  12. [370]
    G. Lusztig, Cells in affine Weyl groups II, J. Algebra 109 (1987), 536–548. [198, 200]zbMATHMathSciNetCrossRefGoogle Scholar
  13. [389]
    A. Mathas, Some generic representations, W-graphs, and duality, J. Algebra 170 (1994), 322–353. [200]zbMATHMathSciNetCrossRefGoogle Scholar
  14. [390]
    A. Mathas, A q-analogue of the Coxeter complex, J. Algebra 164 (1994), 831–848. [200]zbMATHMathSciNetCrossRefGoogle Scholar
  15. [391]
    A. Mathas, On the left cell representations of Iwahori-Hecke algebras of finite Coxeter groups, J. London Math. Soc. 54 (1996), 475–488. [200]zbMATHMathSciNetGoogle Scholar
  16. [455]
    J.-Y. Shi, The Kazhdan-Lusztig cells in certain affine Weyl groups, Lect. Notes in Math. 1179, Springer, Berlin, 1986. [200, 293]Google Scholar
  17. [481]
    L. Solomon, A decomposition of the group algebra of a finite Coxeter group, J. Algebra 9 (1968), 220–239. [200]zbMATHMathSciNetCrossRefGoogle Scholar
  18. [492]
    R. P. Stanley, Some aspects of groups acting on finite posets, J. Combin. Theory Ser. A 32 (1982), 132–161. [200]zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations