Advertisement

Kazhdan-Lusztig and R-polynomials

Chapter
  • 3.2k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 231)

Keywords

Induction Hypothesis Weyl Group Coxeter Group Schubert Variety Lattice Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. [8]
    H. H. Andersen, The irreducible characters for semi-simple algebraic groups and for quantum groups, Proceedings of the International Congress of Mathematicians, Zürich, 1994, Birkhäuser, Basel, Switzerland, 1995, pp. 732–743. [171]Google Scholar
  2. [9]
    D. André, Solution directe du probléme résolu par M. Bertrand, C. R. Acad. Sci. Paris 105 (1887), 436–437. [170]Google Scholar
  3. [47]
    S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, 182, Birkhäuser Boston Inc., Boston, MA, 2000, xii+251. [24, 171]zbMATHGoogle Scholar
  4. [69]
    B. D. Boe, A counterexample to the Gabber-Joseph conjecture, in Kazhdan-Lusztig Theory and Related Topics, Contemp. Math. Vol. 139, American Mathematical Society, Providence, RI, 1992, pp. 1–3. [170]Google Scholar
  5. [79]
    N. Bourbaki, Groupes et algébres de Lie, Ch. 4–6, Éléments de Mathématique, Fasc. XXXIV, Hermann, Paris, 1968; Masson, Paris, 1981. [24, 88, 127, 129, 130, 170]zbMATHGoogle Scholar
  6. [83]
    T. Braden, R. MacPherson, From moment graphs to intersection cohomology, Math. Ann. 321 (2001), 533–551. [171]MathSciNetCrossRefzbMATHGoogle Scholar
  7. [87]
    F. Brenti, A combinatorial formula for Kazhdan-Lusztig polynomials, Invent. Math. 118 (1994), 371–394. [170]zbMATHMathSciNetCrossRefGoogle Scholar
  8. [88]
    F. Brenti, Combinatorial properties of the Kazhdan-Lusztig R-polynomials for S n, Adv. Math. 126 (1997), 21–51. [170]zbMATHMathSciNetCrossRefGoogle Scholar
  9. [89]
    F. Brenti, Combinatorial expansions of Kazhdan-Lusztig polynomials, J. London Math. Soc. 55 (1997), 448–472. [170, 172]zbMATHMathSciNetCrossRefGoogle Scholar
  10. [92]
    F. Brenti, Lattice paths and Kazhdan-Lusztig polynomials, J. Amer. Math. Soc. 11 (1998), 229–259. [170]zbMATHMathSciNetCrossRefGoogle Scholar
  11. [102]
    F. Brenti, R. Simion, Enumerative aspects of Kazhdan-Lusztig polynomials, J. Algebraic Combin. 11 (2000), 187–196. [170]MathSciNetCrossRefzbMATHGoogle Scholar
  12. [109]
    J. B. Carrell, The Bruhat graph of a Coxeter group, a conjecture of Deodhar, and rational smoothness of Schubert varieties, Algebraic Groups and Their Generalizations: Classical Methods (University Park, 1991), 53–61, Proc. Sympos. Pure Math. 56, American Mathematical Society, Providence, RI, 1994. [171]Google Scholar
  13. [113]
    F. Caselli, A simple combinatorial proof of a generalization of a result of Polo, Represent. Theory 8 (2004), 479–486. [170, 172]zbMATHMathSciNetCrossRefGoogle Scholar
  14. [180]
    V. V. Deodhar, On some geometric aspects of Bruhat orderings. I. A finer decomposition of Bruhat cells, Invent. Math. 79 (1985), 499–511. [170]zbMATHMathSciNetCrossRefGoogle Scholar
  15. [181]
    V. V. Deodhar, Local Poincaré duality and non-singularity of Schubert varieties, Commun. Algebra 13 (1985), 1379–1388. [171]zbMATHMathSciNetGoogle Scholar
  16. [200]
    M. J. Dyer, Hecke algebras and reflections in Coxeter groups, Ph.D. Thesis, University of Sydney, 1987. [130, 161, 170]Google Scholar
  17. [201]
    M. J. Dyer, On some generalisations of the Kazhdan-Lusztig polynomials for “universal” Coxeter groups, J. Algebra 116 (1988), 353–371. [170]zbMATHMathSciNetCrossRefGoogle Scholar
  18. [205]
    M. J. Dyer, Hecke algebras and shellings of Bruhat intervals, Compos. Math., 89 (1993), 91–115. [170]zbMATHMathSciNetGoogle Scholar
  19. [210]
    M. J. Dyer, On coefficients of q in Kazhdan-Lusztig polynomials, Algebraic groups and Lie groups Austral. Math. Soc. Lect. Ser., 9, Cambridge University Press, Cambridge, 1997, pp. 189–194. [170]Google Scholar
  20. [237]
    W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 1, Wiley, New York, 1950. [170] §III.1, p.21.zbMATHGoogle Scholar
  21. [268]
    I. P. Goulden, D. M. Jackson, Combinatorial Enumeration, Wiley-Interscience, New York, 1983. [170] §5.3.zbMATHGoogle Scholar
  22. [322]
    D. Kazhdan, G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165–184. [131, 170, 171, 173, 175, 188, 196, 200]MathSciNetCrossRefzbMATHGoogle Scholar
  23. [323]
    D. Kazhdan, G. Lusztig, Schubert varieties and Poincaré duality, in Geometry of the Laplace operator, Proc. Sympos. Pure Math. 34, American Mathematical Society, Providence, RI, 1980, pp. 185–203. [170, 171]Google Scholar
  24. [337]
    V. Lakshmibai, B. Sandhya, Criterion for smoothness of Schubert varieties in Sl(n)/B, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), 45–52. [171]MathSciNetCrossRefzbMATHGoogle Scholar
  25. [341]
    A. Lascoux, Polynômes de Kazhdan-Lusztig pour les variétés de Schubert vexillaires. C. R. Acad. Sci. Paris Sr. I Math. 321 (1995), 667–670. [171]zbMATHMathSciNetGoogle Scholar
  26. [421]
    P. Polo, Construction of arbitrary Kazhdan-Lusztig polynomials in symmetric groups, Represent. Theory 3 (1999), 90–104. [170, 172]zbMATHMathSciNetCrossRefGoogle Scholar
  27. [454]
    B. Shapiro, M. Shapiro, A. Vainshtein, Kazhdan-Lusztig polynomials for certain varieties of incomplete flags, Discrete Math. 180 (1998), 345–355. [170, 171]MathSciNetCrossRefzbMATHGoogle Scholar
  28. [523]
    H. Tagawa, On the non-negativity of the first coefficient of Kazhdan-Lusztig polynomials. J. Algebra 177 (1995), 698–707. [170]zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations