Advertisement

Weak order and reduced words

Chapter
  • 3.3k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 231)

Keywords

Normal Form Group Element Word Problem Coxeter Group Homotopy Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. [25]
    C. Berge, Principles of Combinatorics, Academic Press, New York, 1971. [87]Google Scholar
  2. [53]
    A Björner, The weak ordering of a Coxeter group, unpublished notes, 1981. [87]Google Scholar
  3. [56]
    A. Björner, Some combinatorial and algebraic properties of Coxeter complexes and Tits buildings, Adv. Math. 52 (1984), 173–212. [88, 200]zbMATHCrossRefGoogle Scholar
  4. [58]
    A. Björner, Essential chains and homotopy type of posets, Proc. Amer. Math. Soc. 116 (1992), 1179–1181. [88]zbMATHMathSciNetCrossRefGoogle Scholar
  5. [59]
    A. Björner, The Möbius function of factor order, Theoret. Computer Sci. 117 (1993), 91–98. [88]zbMATHCrossRefGoogle Scholar
  6. [79]
    N. Bourbaki, Groupes et algébres de Lie, Ch. 4–6, Éléments de Mathématique, Fasc. XXXIV, Hermann, Paris, 1968; Masson, Paris, 1981. pp. 40–44 [24, 88, 127, 129, 130, 170]Google Scholar
  7. [106]
    K. S. Brown, Buildings, Springer, New York, 1989. [24, 88]Google Scholar
  8. [143]
    F. du Cloux, Un algorithme de forme normal pour les groupes de Coxeter, preprint, École Polytechn. Palaiseau, 1990. [82, 87]Google Scholar
  9. [145]
    F. du Cloux, A transducer approach to Coxeter groups, J. Symb. Comput. 27 (1999), 311–324. [82, 87]zbMATHCrossRefGoogle Scholar
  10. [157]
    J. H. Conway, N. J. A. Sloane, A. R. Wilks, Gray codes for reflection groups, Graphs Combin. 5 (1989), 315–325. [88]MathSciNetCrossRefGoogle Scholar
  11. [223]
    H. Eriksson, Computational and combinatorial aspects of Coxeter groups, Ph.D. Thesis, KTH, Stockholm, Sweden, 1994. [88, 125, 130, 294]Google Scholar
  12. [230]
    K. Eriksson, Polygon posets and the weak order of Coxeter groups. J. Algebraic Combin. 4 (1995), 233–252. [88]zbMATHMathSciNetCrossRefGoogle Scholar
  13. [329]
    A. Knutson, E. Miller, Subword complexes in Coxeter groups, Adv. Math. 184 (2004), 161–176. [88]MathSciNetCrossRefGoogle Scholar
  14. [359]
    E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137–1153. [87]zbMATHMathSciNetGoogle Scholar
  15. [388]
    G. Markowsky, Permutation lattices revisited, Math. Social Sci. 27 (1994), 59–72. [88]zbMATHMathSciNetCrossRefGoogle Scholar
  16. [431]
    N. Reading, The order dimension of the poset of regions in a hyperplane arrangement, J. Combin. Theory Ser. A 104 (2003), 265–285. [88]zbMATHMathSciNetCrossRefGoogle Scholar
  17. [446]
    M. Ronan, Lectures on Buildings, Academic Press, San Diego, 1989. [88]Google Scholar
  18. [452]
    I. R. Savage, Contributions to the theory of rank order statistics: Applications of lattice theory, Rev Int. Statist. Inst. 32 (1964), 52–64. [87]zbMATHMathSciNetCrossRefGoogle Scholar
  19. [537]
    J. Tits, Le problème des mots dans les groupes de Coxeter, Symposia Mathematica (INDAM, Rome, 1967/68), Academic Press, London, 1969, vol. 1, pp. 175–185. [87]Google Scholar
  20. [538]
    J. Tits, Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Math. No. 386, Springer, Berlin, 1974. [24, 88]Google Scholar
  21. [541]
    P. Ungar, 2N noncollinear points determine at least 2N directions, J. Combin. Theory, Ser. A 33 (1982), 343–347. [88]zbMATHMathSciNetCrossRefGoogle Scholar
  22. [557]
    T. Yanagimoto, M. Okamoto, Partial orderings of permutations and monotonicity of a rank correlation statistics, Ann. Inst. Statist. Math. 21 (1969), 489–506. [87]MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations