Advertisement

Bruhat order

Chapter
  • 3.6k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 231)

Keywords

Symmetric Group Weyl Group Parabolic Subgroup Coxeter Group Maximal Chain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. [35]
    I. N. Bernstein, I. M. Gel’fand, S. I. Gel’fand, Schubert cells and the cohomology of the spaces G/P, Russian Math. Surv. 28 (1973), 1–26. [63]CrossRefzbMATHGoogle Scholar
  2. [54]
    A. Björner, Orderings of Coxeter groups, in Combinatorics and Algebra, Boulder 1983 (ed. C. Greene), Contemp. Math., Vol. 34, American Mathematical Society, Providence, RI, 1984, pp. 175–195. [63, 64, 87]Google Scholar
  3. [55]
    A. Björner, Posets, regular CW complexes and Bruhat order, European J. Combin. 5 (1984), 7–16. [64]zbMATHMathSciNetGoogle Scholar
  4. [65]
    A. Björner, M. Wachs, Bruhat order of Coxeter groups and shellability, Adv. Math. 43 (1982), 87–100. [64]CrossRefzbMATHGoogle Scholar
  5. [67]
    A. Björner, M. Wachs, Generalized quotients in Coxeter groups, Trans. Amer. Math. Soc. 308 (1988), 1–37. [64, 242]MathSciNetCrossRefzbMATHGoogle Scholar
  6. [72]
    A. Borel, Foreword to Chevalley’s paper Sur les décompositions cellulaires des éspaces G/B, manuscript, 1958. Algebraic Groups and Their Generalizations: Classical Methods (University Park, 1991), 1–23, Proc. Sympos. Pure Math. 56, American Mathematical Society, Providence, RI, 1994 [134]). [63]zbMATHMathSciNetGoogle Scholar
  7. [100]
    F. Brenti, F. Caselli, M. Marietti, Special matchings and Kazhdan-Lusztig polynomials, Adv. Math., to appear. [64, 159, 161]Google Scholar
  8. [134]
    C. Chevalley, Sur les décompositions cellulaires des éspaces G/B, manuscript, 1958. Algebraic Groups and Their Generalizations: Classical Methods (University Park, 1991), 1–23, Proc. Sympos. Pure Math. 56, American Mathematical Society, Providence, RI, 1994. [63, 327]Google Scholar
  9. [176]
    V. V. Deodhar, Some characterizations of Bruhat ordering on a Coxeter group and determination of the relative Möbius function, Invent. Math. 39 (1977), 187–198. [63, 64]zbMATHMathSciNetCrossRefGoogle Scholar
  10. [179]
    V. V. Deodhar, On the root system of a Coxeter group, Commun. Algebra 10 (1982), 611–630. [64, 130]zbMATHMathSciNetGoogle Scholar
  11. [203]
    M. J. Dyer, On the “Bruhat graph” of a Coxeter system, Compos. Math. 78 (1991), 185–191. [55, 64, 162]zbMATHMathSciNetGoogle Scholar
  12. [206]
    M. J. Dyer, The nil Hecke ring and Deodhar’s conjecture on Bruhat intervals, Invent. Math. 111 (1993), 571–574. [64]zbMATHMathSciNetCrossRefGoogle Scholar
  13. [220]
    C. Ehresmann, Sur la topologie de certains éspaces homogènes, Ann. Math. 35 (1934), 396–443. [63]zbMATHMathSciNetCrossRefGoogle Scholar
  14. [294]
    G. Higman, Ordering by divisibility in abstract algebras, Proc. London Math. Soc. 2 (1952), 326–336. [64]zbMATHMathSciNetGoogle Scholar
  15. [298]
    A. van den Hombergh, About the automorphisms of the Bruhat-ordering in a Coxeter group, Indag. math. 36 (1974), 125–131. [38, 64]Google Scholar
  16. [303]
    A. Hultman, Fixed points of involutive automorphisms of the Bruhat order, Adv. Math., to appear. [64]Google Scholar
  17. [309]
    F. Incitti, The Bruhat order on the involutions of the hyperoctahedral group, European J. Combin. 24 (2003), 825–848. [64]zbMATHMathSciNetCrossRefGoogle Scholar
  18. [310]
    F. Incitti, The Bruhat order on the involutions of the symmetric group, J. Algebraic Combin. 20 (2004), 243–261. [64]zbMATHMathSciNetCrossRefGoogle Scholar
  19. [311]
    F. Incitti, Bruhat order on classical Weyl groups: minimal chains and covering relation, European J. Combin. 26 (2005), 729–753. [64, 294]zbMATHMathSciNetCrossRefGoogle Scholar
  20. [312]
    F. Incitti, Bruhat order on the involutions of classical Weyl groups, preprint. [64]Google Scholar
  21. [325]
    S. V. Kerov, W-graphs of representations of symmetric groups, J. Sov. Math. 28 (1985), 596–605. [64, 193, 200]CrossRefGoogle Scholar
  22. [424]
    R. A. Proctor, Bruhat lattices, plane partition generating functions, and minuscule representations, European J. Combin. 5 (1984), 331–350. [64]zbMATHMathSciNetGoogle Scholar
  23. [430]
    N. Reading, Order dimension, strong Bruhat order and lattice properties for posets, Order 19 (2002), 73–100. [64]zbMATHMathSciNetCrossRefGoogle Scholar
  24. [445]
    R. Richardson, T. Springer, The Bruhat order on symmetric varieties, Geom. Dedicata 35 (1990), 389–436; and 49 (1994), 231–238. [64]MathSciNetCrossRefzbMATHGoogle Scholar
  25. [543]
    D.-N. Verma, Structure of certain induced representations of complex semisimple Lie algebras, Bull. Amer. Math. Soc. 74 (1968), 160–166. [63]zbMATHMathSciNetCrossRefGoogle Scholar
  26. [544]
    D.-N. Verma, Möbius inversion for the Bruhat order on a Weyl group, Ann. Sci. École Norm. Sup. 4 (1971), 393–398. [63, 64]zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations