Advertisement

The basics

Chapter
  • 3.4k Downloads
Part of the Graduate Texts in Mathematics book series (GTM, volume 231)

Keywords

Symmetric Group Weyl Group Coxeter Group Exchange Property Dihedral Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. [47]
    S. Billey, V. Lakshmibai, Singular Loci of Schubert Varieties, Progress in Mathematics, 182, Birkhäuser Boston Inc., Boston, MA, 2000, xii+251. [24, 171]zbMATHGoogle Scholar
  2. [79]
    N. Bourbaki, Groupes et algébres de Lie, Ch. 4–6, Éléments de Mathématique, Fasc. XXXIV, Hermann, Paris, 1968; Masson, Paris, 1981. [24, 88, 127, 129, 130, 170]zbMATHGoogle Scholar
  3. [106]
    K. S. Brown, Buildings, Springer, New York, 1989. [24, 88]zbMATHGoogle Scholar
  4. [110]
    R. W. Carter, Simple Groups of Lie Type, J. Wiley & Sons, London, 1972. [24]zbMATHGoogle Scholar
  5. [111]
    R. W. Carter, Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, Wiley Interscience, London, 1985. [24]zbMATHGoogle Scholar
  6. [162]
    H. S. M. Coxeter, Discrete groups generated by reflections, Ann. Math. 35 (1934), 588–621. [24]zbMATHMathSciNetCrossRefGoogle Scholar
  7. [163]
    H. S. M. Coxeter, The complete enumeration of finite groups of the form R2i = (RiRj)kij = 1, J. London Math. Soc. 10 (1935), 21–25. [24]zbMATHGoogle Scholar
  8. [166]
    H. S. M. Coxeter, W. O. J. Moser, Generators and Relations for Discrete Groups, 4th revised ed., Ergebnisse der Mathematik und ihrer Grenzgebiete 14, Springer-Verlag, Berlin, 1980. [24]Google Scholar
  9. [182]
    V. V. Deodhar, Some characterizations of Coxeter groups, Enseign. Math. 32 (1986), 111–120. [25]zbMATHMathSciNetGoogle Scholar
  10. [185]
    V. V. Deodhar, A note on subgroups generated by reflections in Coxeter groups, Arch. Math. 53 (1989), 543–546. [25]zbMATHMathSciNetCrossRefGoogle Scholar
  11. [202]
    M. J. Dyer, Reflection subgroups of Coxeter systems, J. Algebra 135 (1990), 57–73. [25]zbMATHMathSciNetCrossRefGoogle Scholar
  12. [248]
    W. Fulton, Young tableaux. With Applications to Representation Theory and Geometry. London Mathematical Society Student Texts 35, Cambridge University Press, Cambridge, 1997. [24, 234, 307]zbMATHGoogle Scholar
  13. [261]
    M. Geck, G. Pfeiffer, On the irreducible characters of Hecke algebras, Adv. Math. 102 (1993), 79–94. [25]MathSciNetCrossRefzbMATHGoogle Scholar
  14. [266]
    R. Gill, On posets from conjugacy classes of Coxeter groups, Discrete Math. 216 (2000), 139–152. [25]zbMATHMathSciNetCrossRefGoogle Scholar
  15. [289]
    M. Hazewinkel, W. Hesselink, D. Siersma, F. D. Veldkamp, The ubiquity of Coxeter-Dynkin diagrams (an introduction to the A-D-E problem), Nieuw Arch. Wisk. 25 (1977), 257–307. [24]MathSciNetzbMATHGoogle Scholar
  16. [295]
    H. L. Hiller, Geometry of Coxeter groups, Pitman, Boston, 1982. [24, 208]zbMATHGoogle Scholar
  17. [304]
    J. E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer, New York, 1972. [24]zbMATHGoogle Scholar
  18. [305]
    J. E. Humphreys, Linear Algebraic Groups, Springer, New York, 1975. [24]zbMATHGoogle Scholar
  19. [306]
    J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge University Press, Cambridge, 1990. [4, 24, 123, 124, 126, 130, 132, 134, 136, 174, 175, 200, 205, 240]zbMATHGoogle Scholar
  20. [317]
    V. G. Kac, Infinite-Dimensional Lie Algebras, 3rd ed., Cambridge University Press, Cambridge, 1990. [24]zbMATHGoogle Scholar
  21. [334]
    S. Kumar, Kac-Moody Groups, Their Flag Varieties and Representation Theory, Progress in Mathematics, 204, Birkhäuser, Boston, MA, 2002. [24]zbMATHGoogle Scholar
  22. [392]
    H. Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C.R. Acad. Sci. Paris 258 (1964), 3419–3422. [25]zbMATHMathSciNetGoogle Scholar
  23. [396]
    P. McMullen, E. Schulte, Abstract Regular Polytopes, Encyclopedia of Mathematics and its Applications, 92, Cambridge University Press, Cambridge 2002. [24]zbMATHGoogle Scholar
  24. [518]
    J. Stillwell, Classical Topology and Combinatorial Group Theory, 2nd ed., Graduate Texts in Mathematics, 72. Springer-Verlag, New York, 1993. [24]zbMATHGoogle Scholar
  25. [518]
    J. Stillwell, Classical Topology and Combinatorial Group Theory, 2nd ed., Graduate Texts in Mathematics, 72. Springer-Verlag, New York, 1993. [24] p 45zbMATHGoogle Scholar
  26. [534]
    J. Tits, Groupes et géométries de Coxeter, preprint, I.H.E.S., Paris, 1961. [24]Google Scholar
  27. [538]
    J. Tits, Buildings of Spherical Type and Finite BN-pairs, Lecture Notes in Math. No. 386, Springer, Berlin, 1974. [24, 88]zbMATHGoogle Scholar
  28. [545]
    D.-N. Verma, A strengthening of the exchange property of Coxeter groups, preprint, 1972. [24]Google Scholar
  29. [546]
    E. B. Vinberg, Discrete reflection groups in Lobachevsky spaces, Proc. Intern. Congress Math. (Warsaw, 1983), PWN, Warsaw, 1984, pp. 593–601. [24]Google Scholar
  30. [547]
    E. B. Vinberg, Hyperbolic reflection groups, Russian Math. Surveys 40 (1985), 31–75. [24]zbMATHMathSciNetCrossRefGoogle Scholar
  31. [555]
    E. Witt, Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Univ. Hamburg 14 (1941), 289–322. [24]zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Personalised recommendations