Skip to main content

Subband Based Blind Source Separation

  • Chapter

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

In this chapter, we address subband-based blind source separation (BSS) for convolutive mixtures of speech by reporting a large number of experimental results. The subband-based BSS approach offers a compromise between time-domain and frequency-domain techniques. The former is usually difficult and slow with many separation filter coefficients to estimate. With the latter it is difficult to estimate statistics when the adaptation data length is insufficient. With subband-based BSS, a sufficient number of samples for estimating statistics can be held in each subband by using a moderate number of subbands. Moreover, by using FIR filters in each subband, which are shorter than the filters used for time-domain BSS, we can handle long reverberation. In addition, subband-based BSS allows us to select the separation method suited to each subband. Using this advantage, we introduce efficient separation procedures that take both the frequency characteristics of the room reverberation and speech signals into consideration. In concrete terms, longer separation filters and an overlap-blockshift in BSS’s batch adaptation in low frequency bands improve the separation performance. Consequently, frequency-dependent subband processing is successfully realized with subband-based BSS.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Haykin, Unsupervised Adaptive Filtering. John Wiley & Sons, 2000.

    Google Scholar 

  2. A. Hyvarinen, J. Karhunen, and E. Oja, Independent Component Analysis. John Wiley & Sons, 2001.

    Google Scholar 

  3. T. W. Lee, Independent Component Analysis — Theory and Applications. Kluwer Academic Publishers, 1998.

    Google Scholar 

  4. S. Amari, S. C. Douglas, A. Cichocki, and H. H. Yang, “Multichannel blind deconvolution and equalization using the natural gradient,” in Proc. IEEE Workshop on Signal Processing Advances in Wireless Communications, 1997, pp. 101–104.

    Google Scholar 

  5. K. Torkkola, “Blind separation of delayed and convolved sources,” in Unsupervised Adaptive Filtering, S. Haykin, Ed., vol. 1, pp. 321–375, John Wiley & Sons, 2000.

    Google Scholar 

  6. M. Kawamoto, K. Matsuoka, and N. Ohnishi, “A method of blind separation for convolved non-stationary signals,” Neurocomputing, vol. 22, pp. 157–171, Nov. 1998.

    Article  Google Scholar 

  7. H. Buchner, R. Aichner, and W. Kellermann, “Blind source separation for convolutive mixtures: a unified treatment,” in Audio Signal Processing for Next-Generation Multimedia Communication Systems, Y. Huang and J. Benesty, Eds., pp. 255–293, Kluwer Academic Publishers, 2004.

    Google Scholar 

  8. S. C. Douglas, “Blind separation of acoustic signals,” in Microphone Arrays: Techniques and Applications, M. Brandstein and D. B. Ward, Eds., pp. 355–380, Springer-Verlag, 2001.

    Google Scholar 

  9. P. Smaragdis, “Blind separation of convolved mixtures in the frequency domain,” Neurocomputing, vol. 22, pp. 21–34, Nov. 1998.

    Article  MATH  Google Scholar 

  10. S. Ikeda and N. Murata, “A method of ICA in time-frequency domain,” in Proc. ICA, 1999, pp. 365–370.

    Google Scholar 

  11. M. Z. Ikram and D. R. Morgan, “Exploring permutation inconsistency in blind separation of speech signals in a reverberant environment,” in Proc. IEEE ICASSP, 2000, pp. 1041–1044.

    Google Scholar 

  12. J. Anemüller and B. Kollmeier, “Amplitude modulation decorrelation for convolutive blind source separation,” in Proc. ICA, 2000, pp. 215–220.

    Google Scholar 

  13. S. Araki, R. Mukai, S. Makino, T. Nishikawa, and H. Saruwatari, “The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech,” IEEE Trans. Speech Audio Processing, vol. 11, pp. 109–116, Mar. 2003.

    Article  Google Scholar 

  14. N. Murata, S. Ikeda, and A. Ziehe, “An approach to blind source separation based on temporal structure of speech signals,” Neurocomputing, vol. 41, pp. 1–24, Oct. 2001.

    Article  Google Scholar 

  15. H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust approach to the permutation problem of frequency-domain blind source separation,” in Proc. IEEE ICASSP, 2003, pp. 381–384.

    Google Scholar 

  16. K. Rahbar and J. P. Reilly, “A new fast-converging method for BSS of speech signals in acoustic environments,” in Proc. IEEE WASPAA, 2003, pp. 21–24.

    Google Scholar 

  17. K. Matsuoka and S. Nakashima, “Minimal distortion principle for blind source separation,” in Proc. ICA, 2001, pp. 722–727.

    Google Scholar 

  18. S. Araki, S. Makino, R. Aichner, T. Nishikawa, and H. Saruwatari, “Blind source separation for convolutive mixtures of speech using subband processing,” in Proc. SMMSP (International Workshop on Spectral Methods and Multirate Signal Processing), 2002, pp. 195–202.

    Google Scholar 

  19. S. Araki, S. Makino, R. Aichner, T. Nishikawa, and H. Saruwatari, “Subband based blind source separation for convolutive mixtures of speech,” in Proc. IEEE ICASSP, 2003, pp. 509–512.

    Google Scholar 

  20. J. Huang, K.-C. Yen, and Y. Zhao, “Subband-based adaptive decorrelation filtering for co-channel speech separation,” IEEE Trans. Speech Audio Processing, vol. 8, pp. 402–406, July 2000.

    Article  Google Scholar 

  21. F. Duplessis-Beaulieu and B. Champagne, “Fast convolutive blind speech separation via subband adaptation,” in Proc. IEEE ICASSP, 2003, pp. 513–516.

    Google Scholar 

  22. S. Araki, S. Makino, R. Aichner, T. Nishikawa, and H. Saruwatari, “Subband based blind source separation with appropriate processing for each frequency band,” in Proc. ICA, 2003, pp. 499–504.

    Google Scholar 

  23. S. Araki, S. Makino, R. Aichner, T. Nishikawa, and H. Saruwatari, “Subbandbased blind separation for convolutive mixtures of speech,” IEEE Trans. Speech Audio Processing, submitted.

    Google Scholar 

  24. R. Mukai, S. Araki, H. Sawada, and S. Makino, “Evaluation of separation and dereverberation performance in frequency domain blind source separation,” Acoustical Science and Technology, vol. 25, pp. 119–126, Mar. 2004.

    Article  Google Scholar 

  25. M. R. Portnoff, “Implementation of the digital phase vocoder using the fast Fourier transform,” IEEE Trans. Acoustics, Speech and Signal Processing, vol. 24, pp. 243–248, June 1976.

    Article  Google Scholar 

  26. N. Grbic, X.-J. Tao, S. E. Nordholm, and I. Claesson, “Blind signal separation using overcomplete subband representation,” IEEE Trans. Speech Audio Processing, vol. 9, pp. 524–533, July 2001.

    Article  Google Scholar 

  27. S. L. Gay and R. J. Mammone, “Fast converging subband acoustic echo cancellation using RAP on the WE DSP16A,” in Proc. IEEE ICASSP, 1990, pp. 1141–1144.

    Google Scholar 

  28. R. Crochiere and L. Rabiner, Multirate Digital Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, 1983.

    Google Scholar 

  29. P. L. Chu, “Weaver SSB subband acoustic echo canceller,” in Proc. IWAENC, 1993, pp. 173–176.

    Google Scholar 

  30. S. Makino, J. Noebauer, Y. Haneda, and A. Nakagawa, “SSB subband echo canceller using low-order projection algorithm,” in Proc. IEEE ICASSP, 1996, pp. 945–948.

    Google Scholar 

  31. T. Nishikawa, H. Saruwatari, and K. Shikano, “Blind source separation of acoustic signals based on multistage ICA combining frequency-domain ICA and time-domain ICA,” IEICE Trans. Fundamentals, vol. E86-A, pp. 846–858, Apr. 2003.

    Google Scholar 

  32. R. Aichner, S. Araki, S. Makino, T. Nishikawa, and H. Saruwatari, “Time domain blind source separation of non-stationary convolved signals by utilizing geometric beamforming,” in IEEE International Workshop on Neural Networks for Signal Processing, 2002, pp. 445–454.

    Google Scholar 

  33. S. Araki, S. Makino, Y. Hinamoto, R. Mukai, T. Nishikawa, and H. Saruwatari, “Equivalence between frequency domain blind source separation and frequency domain adaptive beamforming for convolutive mixtures,” EURASIP Journal on Applied Signal Processing, vol. 2003, no. 11, pp. 1157–1166, 2003.

    Article  Google Scholar 

  34. S. Kurita, H. Saruwatari, S. Kajita, K. Takeda, and F. Itakura, “Evaluation of blind signal separation method using directivity pattern under reverberant conditions,” in Proc. IEEE ICASSP, 2000, pp. 3140–3143.

    Google Scholar 

  35. H. Saruwatari, S. Kurita, and K. Takeda, “Blind source separation combining frequency-domain ICA and beamforming,” in Proc. IEEE ICASSP, 2001, pp. 2733–2736.

    Google Scholar 

  36. H. Sawada, R. Mukai, and S. Makino, “Direction of arrival estimation for multiple source signals using independent component analysis,” in Seventh International Symposium on Signal Processing and its Applications, 2003, vol. 2, pp. 411–414.

    Article  Google Scholar 

  37. H. Sawada, R. Mukai, S. Araki, and S. Makino, “Polar coordinate based nonlinear function for frequency domain blind source separation,” in Proc. IEEE ICASSP, 2002, pp. 1001–1004.

    Google Scholar 

  38. T. Nishikawa, H. Saruwatari, K. Shikano, S. Araki, and S. Makino, “Multistage ICA for blind source separation of real acoustic convolutive mixture,” in Proc. ICA, 2003, pp. 523–528.

    Google Scholar 

  39. S. Van Gerven, D. Van Compernolle, L. Nguyen Thi, and C. Jutten, “Blind separation of sources: A comparative study of a 2nd and a 4th order solution,” in Signal Processing VII, Theories and Applications, M. J. J. Holt, C. F. N. Cowan, P. M. Grant, and W. A. Sandham, Eds., Elsevier, pp. 1153–1156, 1994.

    Google Scholar 

  40. X. Sun and S. Douglas, “A natural gradient convolutive blind source separation algorithm for speech mixtures,” in Proc. ICA, 2001, pp. 59–64.

    Google Scholar 

  41. H. Sawada, S. Araki, R. Mukai, and S. Makino, “Blind source separation with different sensor spacing and filter length for each frequency range,” in IEEE International Workshop on Neural Networks for Signal Processing, 2002, pp. 465–474.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Araki, S., Makino, S. (2005). Subband Based Blind Source Separation. In: Speech Enhancement. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27489-8_14

Download citation

  • DOI: https://doi.org/10.1007/3-540-27489-8_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-24039-6

  • Online ISBN: 978-3-540-27489-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics