Skip to main content

Recombinant Rhabdoviruses: Vectors for Vaccine Development and Gene Therapy

  • Chapter
The World of Rhabdoviruses

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 292))

Abstract

The establishment of methods to recover rhabdoviruses from cDNA, so-called reverse genetics systems, has made it possible to genetically engineer rhabdoviruses and to study all aspects of the virus life cycle by introducing defined mutations into the viral genomes. It has also opened the way to make use of the viruses in biomedical applications such as vaccination, gene therapy, or oncolytic virotherapy. The typical gene expression mode of rhabdoviruses, a high genetic stability, and the propensity to tolerate changes in the virus envelope have made rhabdoviruses attractive, targetable gene expression vectors. This chapter provides an overview on the possibilities to manipulate biological properties of the rhabdoviruses that may be important for further development of vaccine vectors and examples of recombinant rhabdoviruses expressing foreign genes and antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham G, Banerjee AK (1976) Sequential transcription of the genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73:1504–1508

    Google Scholar 

  • Ahmed M, McKenzie MO, Puckett S, Hojnacki M, Poliquin L, Lyles DS (2003) Ability of the matrix protein of vesicular stomatitis virus to suppress beta interferon gene expression is genetically correlated with the inhibition of host RNA and protein synthesis. J Virol 77:4646–4657

    Article  PubMed  Google Scholar 

  • Asada T (1974) Treatment of human cancer with mumps virus. Cancer 34:1907–1928

    PubMed  Google Scholar 

  • Astoul E, Lafage M, Lafon M (1996) Rabies superantigen as a Vbeta T-dependent adjuvant. J Exp Med 183:1623–1631

    Article  PubMed  Google Scholar 

  • Balachandran S, Barber GN(2000) Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 50:135–138

    Article  PubMed  Google Scholar 

  • Balachandran S, Porosnicu M, Barber GN (2001) Oncolytic activity of vesicular stomatitis virus is effective against tumors exhibiting aberrant p53, Ras, or myc functionand involves the induction of apoptosis. J Virol 75:3474–3479

    Article  PubMed  Google Scholar 

  • Ball LA, White CN (1976) Order of transcription of genes of vesicular stomatitis virus. Proc Natl Acad Sci U S A 73:442–446

    PubMed  Google Scholar 

  • Ball LA, Pringle CR, Flanagan B, Perepelitsa VP, Wertz GW (1999) Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J Virol 73:4705–4712

    PubMed  Google Scholar 

  • Barr JN, Wertz GW (2001) Polymerase slippage at vesicular stomatitis virus gene junctions to generate poly(A) is regulatedby the upstream 3′-AUAC-5′ tetranucleotide: implications for the mechanism of transcription termination. J Virol 75:6901–6913

    Article  PubMed  Google Scholar 

  • Barr JN, Whelan SP, Wertz GW (1997a) cis-Acting signals involved in termination of vesicular stomatitis virus mRNA synthesis include the conserved AUAC andthe U7 signal for polyadenylation. J Virol 71:8718–8725

    PubMed  Google Scholar 

  • Barr JN, Whelan SP, Wertz GW (1997b) Role of the intergenic dinucleotide in vesicular stomatitis virus RNA transcription. J Virol 71:1794–1801

    PubMed  Google Scholar 

  • Barrera JC, Letchworth GJ (1996) Persistence of vesicular stomatitis virus New Jersey RNA in convalescent hamsters. Virology 219:453–464

    Article  PubMed  Google Scholar 

  • Bergman I, Whitaker-Dowling P, Gao Y, Griffin JA, Watkins SC (2003) Vesicular stomatitis virus expressing a chimeric Sindbis glycoprotein containing an Fc antibody binding domain targets to Her2/neu overexpressing breast cancer cells. Virology 316:337–347

    Article  PubMed  Google Scholar 

  • Bergmann M, Garcia-Sastre A, Palese P (1992) Transfection-mediated recombination of influenza A virus. J Virol 66:7576–7580

    PubMed  Google Scholar 

  • Bergmann M, Romirer I, Sachet M, Fleischhacker R, Garcia-Sastre A, Palese P, Wolff K, Pehamberger H, Jakesz R, Muster T (2001) A genetically engineered influenza A virus with ras-dependent oncolytic properties. Cancer Res 61:8188–8193

    PubMed  Google Scholar 

  • Biacchesi S, Thoulouze MI, Bearzotti M, Yu YX, Bremont M (2000) Recovery of NV knockout infectious hematopoietic necrosis virus expressing foreign genes. J Virol 74:11247–11253

    Article  PubMed  Google Scholar 

  • Biacchesi S, Bearzotti M, Bouguyon E, Bremont M (2002) Heterologous exchanges of the glycoprotein and the matrix protein in a Novirhabdovirus. J Virol 76:2881–2889

    Article  PubMed  Google Scholar 

  • Boritz E, Gerlach J, Johnson JE, Rose JK (1999) Replication-competent rhabdoviruses with human immunodeficiency virus type 1 coats and green fluorescent protein: entry by a pH-independent pathway. J Virol 73:6937–6945

    PubMed  Google Scholar 

  • Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73:251–259

    PubMed  Google Scholar 

  • Buonocore L, Blight KJ, Rice CM, Rose JK (2002) Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels of hepatitis C virus glycoproteins. J Virol 76:6865–6872

    Article  PubMed  Google Scholar 

  • Cassel WA, Murray DR (1992) A ten-year follow-up on stage II mali-gnant melanoma patients treated postsurgically with Newcastle disease virus oncolysate. Med Oncol Tumor Pharmacother 9:169–171

    PubMed  Google Scholar 

  • Cline BL (1976) Ecological associations of vesicular stomatitis virus in rural Central America and Panama. Am J Trop Med Hyg 25:875–883

    PubMed  Google Scholar 

  • Conzelmann KK (1998) Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu Rev Genet 32:123–162

    Google Scholar 

  • Conzelmann KK (2004) Reverse genetics of mononegavirales. In: Current Topics in Microbiology and Immunology (in press)

    Google Scholar 

  • Conzelmann KK, Cox JH, Schneider LG, Thiel HJ (1990) Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175:485–499

    Article  PubMed  Google Scholar 

  • Coulon P, Ternaux JP, Flamand A, Tuffereau C (1998) An avirulent mutant of rabies virus is unable to infect motoneurons in vivo and in vitro. J Virol 72:273–278

    PubMed  Google Scholar 

  • Dalton KP, Rose JK (2001) Vesicular stomatitis virus glycoprotein containing the entire green fluorescent protein on its cytoplasmic domain is incorporated efficiently into virus particles. Virology 279:414–421

    Article  PubMed  Google Scholar 

  • DeMattos CA, DeMattos CC, Rupprecht CE (2001) Rhabdoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields Virology. Vol. 1. Lippincott Williams & Wilkins, Philadelphia, pp 1245–1277

    Google Scholar 

  • Dietzschold B, Wunner WH, Wiktor TJ, Lopes AD, Lafon M, Smith CL, Koprowski H (1983) Characterization of an antigenic determinant of the glycoprotein that correlates with pathogenicity of rabies virus. Proc Natl Acad Sci U S A 80:70–74

    PubMed  Google Scholar 

  • Drolet BS, Chiou PP, Heidel J, Leong JA (1995) Detection of truncated virus particles in a persistent RNA virus infection in vivo. J Virol 69:2140–2147

    PubMed  Google Scholar 

  • Etessami R, Conzelmann KK, Fadai-Ghotbi B, Natelson B, Tsiang H, Ceccaldi PE (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81:2147–2153

    PubMed  Google Scholar 

  • Ezelle HJ, Markovic D, Barber GN (2002) Generation of hepatitis C virus-like particles by use of a recombinant vesicular stomatitis virus vector. J Virol 76:12325–12334

    Article  PubMed  Google Scholar 

  • Faber M, Pulmanausahakul R, Hodawadekar SS, Spitsin S, McGettigan JP, Schnell MJ, Dietzschold B (2002) Overexpression of the rabies virus glycoprotein results in enhancement of apoptosis and antiviral immune response. J Virol 76:3374–3381

    Article  PubMed  Google Scholar 

  • Fernandez M, Porosnicu M, Markovic D, Barber GN (2002) Genetically engineered vesicular stomatitis virus in gene therapy: application for treatment of malignant disease. J Virol 76:895–904

    Article  PubMed  Google Scholar 

  • Ferran MC, Lucas-Lenard JM (1997) The vesicular stomatitis virus matrix protein inhibits transcription from the human beta interferon promoter. J Virol 71:371–377

    PubMed  Google Scholar 

  • Finke S, Conzelmann KK (1997) Ambisense gene expression from recombinant rabies virus: random packaging of positive-and negative-strand ribonucleoprotein complexes into rabies virions. J Virol 71:7281–7288

    PubMed  Google Scholar 

  • Finke S, Conzelmann KK (1999) Virus promoters determine interference by defective RNAs: selective amplification of mini-RNA vectors and rescue from cDNA by a 3′ copy-back ambisense rabies virus. J Virol 73:3818–3825

    PubMed  Google Scholar 

  • Finke S, Conzelmann KK (2003) Dissociation of rabies virus matrix protein functions in regulation of viral RNA synthesis and virus assembly. J Virol 77:12074–12082

    Article  PubMed  Google Scholar 

  • Finke S, Cox JH, Conzelmann KK (2000) Differential transcription attenuation of rabies virus genes by intergenic regions: generation of recombinant viruses overexpressing the polymerase gene. J Virol 74:7261–7269

    Article  PubMed  Google Scholar 

  • Finke S, Mueller-Waldeck R, Conzelmann KK (2003) Rabies virus matrix protein regulates the balance of virus transcription and replication. J Gen Virol 84:1613–1621

    Article  PubMed  Google Scholar 

  • Flanagan EB, Zamparo JM, Ball LA, Rodriguez LL, Wertz GW (2001) Rearrangement of the genes of vesicular stomatitis virus eliminates clinical disease in the natural host: new strategy for vaccine development. J Virol 75:6107–6114

    Article  PubMed  Google Scholar 

  • Flanagan EB, Schoeb TR, Wertz GW (2003) Vesicular stomatitis viruses with rearranged genomes have altered invasiveness and neuropathogenesis in mice. J Virol 77:5740–5748

    Article  PubMed  Google Scholar 

  • Foley HD, McGettigan JP, Siler CA, Dietzschold B, Schnell MJ (2000) A recombinant rabies virus expressing vesicular stomatitis virus glycoprotein fails to protect against rabies virus infection. Proc Natl Acad Sci U S A 97:14680–14685

    Article  PubMed  Google Scholar 

  • Foley HD, Otero M, Orenstein JM, Pomerantz RJ, Schnell MJ (2002) Rhabdovirus-based vectors with human immunode-ficiency virus type 1 (HIV-1) envelopes display HIV-1-like tropism and target human dendritic cells. J Virol 76:19–31

    Article  PubMed  Google Scholar 

  • Fuerst TR, Niles EG, Studier FW, Moss B (1986) Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126

    PubMed  Google Scholar 

  • Garoff H, Hewson R, Opstelten DJ (1998) Virus maturation by budding. Microbiol Mol Biol Rev 62:1171–1190

    PubMed  Google Scholar 

  • Grigera PR, Marzocca MP, Capozzo AV, Buonocore L, Donis RO, Rose JK (2000) Presence of bovine viral diarrhea virus (BVDV) E2 glycoprotein in VSV recombinant particles and induction of neutralizing BVDV antibodies in mice. Virus Res 69:3–15

    Article  Google Scholar 

  • Grote D, Russell SJ, Cornu TI, Cattaneo R, Vile R, Poland GA, Fielding AK (2001) Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. Blood 97:3746–3754

    Article  PubMed  Google Scholar 

  • Haglund K, Forman J, Krausslich HG, Rose JK (2000) Expression of human immunode-ficiency virus type 1 Gag protein precursor and envelope proteins from a vesicular stomatitis virus recombinant: high-level production of virus-like particles containing HIV envelope. Virology 268:112–121

    Article  PubMed  Google Scholar 

  • Haglund K, Leiner I, Kerksiek K, Buonocore L, Pamer E, Rose JK (2002a) High-level primary CD8(+) T-cell response to human immunodeficiency virus type 1 gag and env generated by vaccination with recombinant vesicular stomatitis viruses. J Virol 76:2730–2738

    Article  PubMed  Google Scholar 

  • Haglund K, Leiner I, Kerksiek K, Buonocore L, Pamer E, Rose JK (2002b) Robust recall and long-term memory T-cell responses induced by prime-boost regimens with heterologous live viral vectors expressing human immunodeficiency virus type 1 Gag and Env proteins. J Virol 76:7506–7517

    Article  PubMed  Google Scholar 

  • Harty RN, Brown ME, Hayes FP, Wright NT, Schnell MJ (2001) Vaccinia virus-free recovery of vesicular stomatitis virus. J Mol Microbiol Biotechnol 3:513–517

    PubMed  Google Scholar 

  • Hinzman EE, Barr JN, Wertz GW (2002) Identification of an upstream sequence element required for vesicular stomatitis virus mRNA transcription. J Virol 76:7632–7641

    Article  PubMed  Google Scholar 

  • Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K (2003) An improved method for recovering rabies virus from cloned c-DNA. J Virol Methods 107:229–236

    Article  PubMed  Google Scholar 

  • Ito N, Takayama M, Yamada K, Sugiyama M, Minamoto N (2001) Rescue of rabies virus from cloned cDNA and identification of the pathogenicity-related gene: glycoprotein gene is associated with virulence for adult mice. J Virol 75:9121–9128

    Article  PubMed  Google Scholar 

  • Iverson LE, Rose JK (1981) Localized attenuation and discontinuous synthesis during vesicular stomatitis virus transcription. Cell 23:477–484

    Article  PubMed  Google Scholar 

  • Jacob Y, Badrane H, Ceccaldi PE, Tordo N (2000) Cytoplasmic dynein LC8 interacts with lyssavirus phosphoprotein. J Virol 74:10217–10222

    Article  PubMed  Google Scholar 

  • Jeetendra E, Robison CS, Albritton LM, Whitt MA (2002) The membrane-proximal domain of vesicular stomatitis virus g protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 76:12300–12311

    Article  PubMed  Google Scholar 

  • Johnson JE, Schnell MJ, Buonocore L, Rose JK (1997) Specific targeting to CD4+ cells of recombinant vesicular stomatitis viruses encoding human immunodeficiency virus envelope proteins. J Virol 71:5060–5068

    PubMed  Google Scholar 

  • Johnson MC, Simon BE, Kim CH, Leong JA (2000) Production of recombinant snakehead rhabdovirus: the NV protein is not required for viral replication. J Virol 74:2343–2350

    Article  PubMed  Google Scholar 

  • Kahn JS, Schnell MJ, Buonocore L, Rose JK (1999) Recombinant vesicular stomatitis virus expressing respiratory syncytial virus (RSV) glycoproteins: RSV fusion protein can mediate infection and cell fusion. Virology 254:81–91

    Article  PubMed  Google Scholar 

  • Kahn JS, Roberts A, Weibel C, Buonocore L, Rose JK (2001) Replication-competent or attenuated, nonpro-pagating vesicular stomatitis viruses expressing respiratory syncytial virus (RSV) antigens protect mice against RSV challenge. J Virol 75:11079–11087

    Article  PubMed  Google Scholar 

  • Khatchikian D, Orlich M, Rott R (1989) Increased viral pathogenicity after insertion of a 28S ribosomal RNA sequence into the haemagglutinin gene of an influenza virus. Nature 340:156–157

    Article  PubMed  Google Scholar 

  • Kim CH, Dummer DM, Chiou PP, Leong JA (1999) Truncated particles produced in fish surviving infectious hematopoietic necrosis virus infection: mediators of persistence? J Virol 73:843–849

    PubMed  Google Scholar 

  • Klas SD, Robison CS, Whitt MA, Miller MA (2002) Adjuvanticity of an IL-12 fusion protein expressed by recombinant delta G-vesicular stomatitis virus. Cell Immunol 218:59–73

    Article  PubMed  Google Scholar 

  • Kretzschmar E, Buonocore L, Schnell MJ, Rose JK (1997) High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. J Virol 71:5982–5989

    PubMed  Google Scholar 

  • Lafon M, Lafage M, Martinez-Arends A, Ramirez R, Vuillier F, Charron D, Lotteau V, Scott-Algara D (1992) Evidence for a viral superantigen in humans. Nature 358:507–510

    Article  PubMed  Google Scholar 

  • Lafon M, Scott-Algara D, Marche PN, Cazenave PA, Jouvin-Marche E (1994) Neonatal deletion and selective expansion of mouse T cells by exposure to rabies virus nucleocapsid superantigen. J Exp Med 180:1207–1215

    Article  PubMed  Google Scholar 

  • Lagging LM, Meyer K, Owens RJ, Ray R (1998) Functional role of hepatitis C virus chimeric glycoproteins in the infectivity of pseudotyped virus. J Virol 72:3539–3546

    PubMed  Google Scholar 

  • Lawson ND, Stillman EA, Whitt MA, Rose JK (1995) Recombinant vesicular stomatitis viruses from DNA. Proc Natl Acad Sci U S A 92:4477–4481

    PubMed  Google Scholar 

  • Le Mercier P, Garcin D, Hausmann S, Kolakofsky D (2002) Ambisense sendai viruses are inherently unstable but are useful to study viral RNA synthesis. J Virol 76:5492–5502

    Article  PubMed  Google Scholar 

  • Letchworth GJ, Barrera JC, Fishel JR, Rodriguez L (1996) Vesicular stomatitis New Jersey virus RNA persists in cattle following convalescence. Virology 219:480–484

    Article  PubMed  Google Scholar 

  • Li Y, Luo L, Schubert M, Wagner RR, Kang CY (1993) Viral liposomes released from insect cells infected with recombinant baculovirus expressing the matrix protein of vesicular stomatitis virus. J Virol 67:4415–4420

    PubMed  Google Scholar 

  • Lorence RM, Reichard KW, Katubig BB, Reyes HM, Phuangsab A, Mitchell BR, Cascino CJ, Walter RJ, Peeples ME (1994) Complete regression of human neuroblastoma xenografts in athymic mice after local Newcastle disease virus therapy. J Natl Cancer Inst 86:1228–1233

    PubMed  Google Scholar 

  • Lyles DS (2000) Cytopathogenesis and inhibition of host gene expression by RNA viruses. Microbiol Mol Biol Rev 64:709–724

    Article  PubMed  Google Scholar 

  • Marcus PI, Rodriguez LL, Sekellick MJ (1998) Interferon induction as a quasispecies marker of vesicular stomatitis virus populations. J Virol 72:542–549

    PubMed  Google Scholar 

  • Martinez I, Rodriguez LL, Jimenez C, Pauszek SJ, Wertz GW (2003) Vesicular stomatitis virus glycoprotein is a determinant of pathogenesis in swine, a natural host. J Virol 77:8039–8047

    Article  PubMed  Google Scholar 

  • Matsuura Y, Tani H, Suzuki K, Kimura-Someya T, Suzuki R, Aizaki H, Ishii K, Moriishi K, Robison CS, Whitt MA, Miyamura T (2001) Characterization of pseudotype VSV possessing HCV envelope proteins. Virology 286:263–275

    Article  PubMed  Google Scholar 

  • McGettigan JP, Foley HD, Belyakov IM, Berzofsky JA, Pomerantz RJ, Schnell MJ (2001a) Rabies virus-based vectors expressing human immunode-ficiency virus type 1 (HIV-1) envelope protein induce a strong, cross-reactive cytotoxic T-lymphocyte response against envelope proteins from different HIV-1 isolates. J Virol 75:4430–4434

    Article  PubMed  Google Scholar 

  • McGettigan JP, Sarma S, Orenstein JM, Pomerantz RJ, Schnell MJ (2001b) Expression and immunogenicity of human immunodeficiency virus type 1 Gag expressed by a replication-competent rhabdovirus-based vaccine vector. J Virol 75:8724–8732

    Article  PubMed  Google Scholar 

  • McGettigan JP, Naper K, Orenstein J, Koser M, McKenna PM, Schnell MJ (2003a) Functional human immunodeficiency virus type 1 (HIV-1) Gag-Pol or HIV-1 Gag-Pol andenv expressed from a single rhabdovirus-based vaccine vector genome. J Virol 77:10889–10899

    Article  PubMed  Google Scholar 

  • McGettigan JP, Pomerantz RJ, Siler CA, McKenna PM, Foley HD, Dietzschold B, Schnell MJ (2003b) Second-generation rabies virus-based vaccine vectors expressing human immunodeficiency virus type 1 gag have greatly reduced pathogenicity but are highly immunogenic. J Virol 77:237–244

    Article  PubMed  Google Scholar 

  • Mebatsion T (2001) Extensive attenuation of rabies virus by simultaneously modifying the dynein light chain binding site in the P protein and replacing Arg333 in the G protein. J Virol 75:11496–11502

    Article  PubMed  Google Scholar 

  • Mebatsion T, Conzelmann KK (1996) Specific infection of CD4+ target cells by recombinant rabies virus pseudotypes carrying the HIV-1 envelope spike protein. Proc Natl Acad Sci U S A 93:11366–11370

    Article  PubMed  Google Scholar 

  • Mebatsion T, Schnell MJ, Conzelmann KK (1995) Mokola virus glycoprotein and chimeric proteins can replace rabies virus gly-coprotein in the rescue of infectious defective rabies virus particles. J Virol 69:1444–1451

    PubMed  Google Scholar 

  • Mebatsion T, Konig M, Conzelmann KK (1996a) Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84:941–951

    Article  PubMed  Google Scholar 

  • Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK (1996b) Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci U S A 93:7310–7314

    Article  PubMed  Google Scholar 

  • Mebatsion T, Finke S, Weiland F, Conzelmann KK (1997) A CXCR4/CD4 pseudotype rhabdovirus that selectively infects HIV-1 envelope protein-expressing cells. Cell 90:841–847

    Article  PubMed  Google Scholar 

  • Mebatsion T, Weiland F, Conzelmann KK (1999) Matrix protein of rabies virus is responsible for the assembly and budding of bullet-shaped particles and interacts with the transmembrane spike glycoprotein G. J Virol 73:242–250

    PubMed  Google Scholar 

  • Miller MA, Lavine CL, Klas SD, Pfeffer LM, Whitt MA (2004) Recombinant replication-restricted VSV as an expression vector for murine cytokines. Protein Expr Purif 33:92–103

    Article  PubMed  Google Scholar 

  • Miyoshi K, Harter DH, Hsu KC (1971) Neuropathological and immuno-fluorescence studies of experimental vesicular stomatitis virus encephalitis in mice. J Neuropathol Exp Neurol 30:266–277

    PubMed  Google Scholar 

  • Morimoto K, Hooper DC, Spitsin S, Koprowski H, Dietzschold B (1999) Pathogenicity of different rabies virus variants inversely correlates with apoptosis and rabies virus glycoprotein expression in infected primary neuron cultures. J Virol 73:510–518

    PubMed  Google Scholar 

  • Morimoto K, Foley HD, McGettigan JP, Schnell MJ, Dietzschold B (2000) Reinvestigation of the role of the rabies virus glycoprotein in viral pathogenesis using a reverse genetics approach. J Neurovirol 6:373–381

    PubMed  Google Scholar 

  • Morimoto K, McGettigan JP, Foley HD, Hooper DC, Dietzschold B, Schnell MJ (2001a) Genetic engineering of live rabies vaccines. Vaccine 19:3543–3551

    Article  PubMed  Google Scholar 

  • Morimoto K, Schnell MJ, Pulmanausahakul R, McGettigan JP, Foley HD, Faber M, Hooper DC, Dietzschold B (2001b) High level expression of a human rabies virus-neutralizing monoclonal antibody by a rhabdovirus-based vector. J Immunol Methods 252:199–206

    Article  PubMed  Google Scholar 

  • Neumann G, Whitt MA, Kawaoka Y (2002) A decade after the generation of a negative-sense RNA virus from cloned cDNA. What have we learned? J Gen Virol 83:2635–2662

    PubMed  Google Scholar 

  • Obuchi M, Fernandez M, Barber GN (2003) Development of recombinant vesicular stomatitis viruses that exploit defects in host defense to augment specific oncolytic activity. J Virol 77:8843–8856

    Article  PubMed  Google Scholar 

  • Ogino M, Ebihara H, Lee BH, Araki K, Lundkvist A, Kawaoka Y, Yoshimatsu K, Arikawa J (2003) Use of vesicular stomatitis virus pseudotypes bearing hantaan or Seoul virus envelope proteins in a rapid and safe neutralization test. Clin Diagn Lab Immunol 10:154–160

    Article  PubMed  Google Scholar 

  • Okuma K, Matsuura Y, Tatsuo H, Inagaki Y, Nakamura M, Yamamoto N, Yanagi Y (2001) Analysis of the molecules involved in human T-cell leukaemia virus type 1 entry by a vesicular stomatitis virus pseudotype bearing its envelope glycoproteins. J Gen Virol 82:821–830

    PubMed  Google Scholar 

  • Okuma K, Dalton KP, Buonocore L, Ramsburg E, Rose JK (2003) Development of a novel surrogate virus for human T-cell leukemia virus type 1: inhibition of infection by osteoprotegerin. J Virol 77:8562–8569

    Article  PubMed  Google Scholar 

  • Orlich M, Gottwald H, Rott R (1994) Nonhomologous recombination between the hemagglutinin gene and the nucleoprotein gene of an influenza virus. Virology 204:462–465

    Article  PubMed  Google Scholar 

  • Plyusnin A, Kukkonen SK, Plyusnina A, Vapalahti O, Vaheri A (2002) Transfection-mediated generation of functionally competent Tula hantavirus with recombinant S RNA segment. EMBO J 21:1497–1503

    Article  PubMed  Google Scholar 

  • Poisson N, Real E, Gaudin Y, Vaney MC, King S, Jacob Y, Tordo N, Blondel D (2001) Molecular basis for the interaction between rabies virus phosphoprotein P and the dynein light chain LC8: dissociation of dynein-binding properties and transcriptional functionality of P. J Gen Virol 82:2691–2696

    PubMed  Google Scholar 

  • Porosnicu M, Mian A, Barber GN (2003) The oncolytic effect of recombinant vesicular stomatitis virus is enhanced by expression of the fusion cytosine deaminase/uracil phosphoribosyltransferase suicide gene. Cancer Res 63:8366–8376

    PubMed  Google Scholar 

  • Pringle CR (1997) The order Mononegavirales-current status. Arch Virol 142:2321–2326

    PubMed  Google Scholar 

  • Prosniak M, Faber M, Hanlon CA, Rupprecht CE, Hooper DC, Dietzschold B (2003) Development of a cocktail of recombinant-expressed human rabies virus-neutralizing monoclonal antibodies for postexposure prophylaxis of rabies. J Infect Dis 188:53–56

    Article  PubMed  Google Scholar 

  • Pulmanausahakul R, Faber M, Morimoto K, Spitsin S, Weihe E, Hooper DC, Schnell MJ, Dietzschold B (2001) Overexpression of cytochrome C by a recombinant rabies virus attenuates pathogenicity and enhances antiviral immunity. J Virol 75:10800–10807

    Article  PubMed  Google Scholar 

  • Quinones-Kochs MI, Schnell MJ, Buonocore L, Rose JK (2001) Mechanisms of loss of foreign gene expression in recombinant vesicular stomatitis viruses. Virology 287:427–435

    Article  PubMed  Google Scholar 

  • Quiroz E, Moreno N, Peralta PH, Tesh RB (1988) A human case of encephalitis associated with vesicular stomatitis virus (Indiana serotype) infection. Am J Trop Med Hyg 39:312–314

    PubMed  Google Scholar 

  • Ramsburg E, Rose NF, Marx PA, Mefford M, Nixon DF, Moretto WJ, Montefiori D, Earl P, Moss B, Rose JK (2004) Highly effective control of an AIDS virus challenge in macaquesby using vesicular stomatitis virus and modified vaccinia virus Ankara vaccine vectors in a single-boost protocol. J Virol 78:3930–3940

    Article  PubMed  Google Scholar 

  • Raux H, Flamand A, Blondel D (2000) Interaction of the rabies virus P protein with the LC8 dynein light chain. J Virol 74:10212–10216

    Article  PubMed  Google Scholar 

  • Reuter JD, Vivas-Gonzalez BE, Gomez D, Wilson JH, Brandsma JL, Greenstone HL, Rose JK, Roberts A (2002) Intranasal vaccination with a recombinant vesicular stomatitis virus expressing cottontail rabbit papillomavirus L1 protein provides complete protection against papillomavirus-induced disease. J Virol 76:8900–8909

    Article  PubMed  Google Scholar 

  • Revilla T, Garci, Ramos G (2003) Fighting a virus with a virus: a dynamic model for HIV-1 therapy. Math Biosci 185:191–203

    Article  PubMed  MathSciNet  Google Scholar 

  • Roberts A, Kretzschmar E, Perkins AS, Forman J, Price R, Buonocore L, Kawaoka Y, Rose JK (1998) Vaccination with a recombinant vesicular stomatitis virus expressing an influenza virus hemagglutinin provides complete protection from influenza virus challenge. J Virol 72:4704–4711

    PubMed  Google Scholar 

  • Roberts A, Buonocore L, Price R, Forman J, Rose JK (1999) Attenuated vesicular stomatitis viruses as vaccine vectors. J Virol 73:3723–3732

    PubMed  Google Scholar 

  • Robison CS, Whitt MA (2000) The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74:2239–2246

    Article  PubMed  Google Scholar 

  • Rose JK (1980) Complete intergenic and flanking gene sequences from the genome of vesicular stomatitis virus. Cell 19:415–421

    Article  PubMed  Google Scholar 

  • Rose JK, Whitt MA (2001) Rhabdoviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology. Vol. 1, Lippincott Williams & Wilkins, Philadelphia, pp 1221–1244

    Google Scholar 

  • Rose NF, Roberts A, Buonocore L, Rose JK (2000) Glycoprotein exchange vectors based on vesicular stomatitis virus allow effective boosting and generation of neutralizing antibodies to a primary isolate of human immunodeficiency virus type 1. J Virol 74:10903–10910

    Article  PubMed  Google Scholar 

  • Rose NF, Marx PA, Luckay A, Nixon DF, Moretto WJ, Donahoe SM, Montefiori D, Roberts A, Buonocore L, Rose JK (2001) An effective AIDS vaccine based on live attenuated vesicular stomatitis virus recombinants. Cell 106:539–549

    Article  PubMed  Google Scholar 

  • Russell SJ (2002) RNA viruses as virotherapy agents. Cancer Gene Ther 9:961–966

    Article  PubMed  Google Scholar 

  • Sabin A, Olitsky P (1938) Influence of host factors on neuroinvasiveness of vesicular stomatitis virus. I. Effect of age on the invasion of the brain by virus instilled in the nose. J Exp Med 66:15–34

    Article  Google Scholar 

  • Sakaguchi T, Uchiyama T, Fujii Y, Kiyotani K, Kato A, Nagai Y, Kawai A, Yoshida T (1999) Double-layered membrane vesicles released from mammalian cells infected with Sendai virus expressing the matrix protein of vesicular stomatitis virus. Virology 263:230–243

    Article  PubMed  Google Scholar 

  • Schickli JH, Flandorfer A, Nakaya T, Martinez-Sobrido L, Garcia-Sastre A, Palese P (2001) Plasmid-only rescue of influenza A virus vaccine candidates. Philos Trans R Soc Lond B Biol Sci 356:1965–1973

    Article  PubMed  Google Scholar 

  • Schirrmacher V, Ahlert T, Probstle T, Steiner HH, Herold-Mende C, Gerhards R, Hagmuller E, Steiner HH (1998) Immunization with virus-modified tumor cells. Semin Oncol 25:677–696

    PubMed  Google Scholar 

  • Schlereth B, Rose JK, Buonocore L, ter Muelen V, Niewiesk S (2000) Successful vaccine-induced seroconversion by single-dose immunization in the presence of measles virus-specific maternal antibodies. J Virol 74:4652–4657

    Article  PubMed  Google Scholar 

  • Schlereth B, Buonocore L, Tietz A, Meulen Vt V, Rose JK, Niewiesk S (2003) Successful mucosal immunization of cotton rats in the presence of measles virus-specific antibodies depends on degree of attenuation of vaccine vector and virus dose. J Gen Virol 84:2145–2151

    Article  PubMed  Google Scholar 

  • Schnell MJ (2001) Viral vectors as potential HIV-1 vaccines. FEMS Microbiol Lett 200:123–129

    Article  PubMed  Google Scholar 

  • Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13:4195–4203

    PubMed  Google Scholar 

  • Schnell MJ, Buonocore L, Kretzschmar E, Johnson E, Rose JK (1996a) Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 93:11359–11365

    Article  PubMed  Google Scholar 

  • Schnell MJ, Buonocore L, Whitt MA, Rose JK (1996b) The minimal conserved transcription stop-start signal promotes stable expression of a foreign gene in vesicular stomatitis virus. J Virol 70:2318–2323

    PubMed  Google Scholar 

  • Schnell MJ, Johnson JE, Buonocore L, Rose JK (1997) Construction of a novel virus that targets HIV-1-infected cells and controls HIV-1 infection. Cell 90:849–857

    Article  PubMed  Google Scholar 

  • Schnell MJ, Buonocore L, Boritz E, Ghosh HP, Chernish R, Rose JK (1998) Requirement for a non-specific glycoprotein cytoplasmic domain sequence to drive efficient budding of vesicular stomatitis virus. EMBO J 17:1289–1296

    Article  PubMed  Google Scholar 

  • Schnell MJ, Foley HD, Siler CA, McGettigan JP, Dietzschold B, Pomerantz RJ (2000) Recombinant rabies virus as potential live-viral vaccines for HIV-1. Proc Natl Acad Sci U S A 97:3544–3549

    Article  PubMed  Google Scholar 

  • Schnitzer TJ, Dickson C, Weiss RA (1979) Morphological and biochemical characterization of viral particles produced by the tsO45 mutant of vesicular stomatitis virus at restrictive temperature. J Virol 29:185–195

    PubMed  Google Scholar 

  • Siler CA, McGettigan JP, Dietzschold B, Herrine SK, Dubuisson J, Pomerantz RJ, Schnell MJ (2002) Live and killed rhabdovirus-based vectors as potential hepatitis C vaccines. Virology 292:24–34

    Article  PubMed  Google Scholar 

  • Sinkovics JG (1991) Viral oncolysates as human tumor vaccines. Int Rev Immunol 7:259–287

    PubMed  Google Scholar 

  • Sinkovics JG, Horvath JC (2000) Newcastle disease virus (NDV): brief history of its oncolytic strains. J Clin Virol 16:1–15

    Article  Google Scholar 

  • Sodja I (1980) Nonlethal infection of laboratory mice induced with “mouse” rabies strains. Acta Virol 24:325–333

    PubMed  Google Scholar 

  • Spann KM, Collins PL, Teng MN (2003) Genetic recombination during coinfection of two mutants of human respiratory syncytial virus. J Virol 77:11201–11211

    Article  PubMed  Google Scholar 

  • Stanziale SF, Fong Y (2003) Novel approaches to cancer therapy using oncolytic viruses. Curr Mol Med 3:61–71

    Article  PubMed  Google Scholar 

  • Stillman EA, Whitt MA (1998) The length and sequence composition of vesicular stomatitis virus intergenic regions affect mRNA levels and the site of transcript initiation. J Virol 72:5565–5572

    PubMed  Google Scholar 

  • Stillman EA, Whitt MA (1999) Transcript initiation and 5′-end modifications are separable events during vesicular stomatitis virus transcription. J Virol 73:7199–7209

    PubMed  Google Scholar 

  • Stojdl DF, Lichty B, Knowles S, Marius R, Atkins H, Sonenberg N, Bell JC (2000) Exploiting tumor-specific defects in the interferon pathway with a previously unknown oncolytic virus. Nat Med 6:821–825

    Article  PubMed  Google Scholar 

  • Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whitt MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769

    Article  PubMed  Google Scholar 

  • Takada A, Feldmann H, Stroeher U, Bray M, Watanabe S, Ito H, McGregor M, Kawaoka Y (2003) Identification of protective epitopes on Ebola virus glycoprotein at the single amino acid level by using recombinant vesicular stomatitis viruses. J Virol 77:1069–1074

    Article  PubMed  Google Scholar 

  • Tatsuo H, Okuma K, Tanaka K, Ono N, Minagawa H, Takade A, Matsuura Y, Yanagi Y (2000) Virus entry is a major determinant of cell tropism of Edmonston and wild-type strains of measles virus as revealed by vesicular stomatitis virus pseudotypes bearing their envelope proteins. J Virol 74:4139–4145

    Article  PubMed  Google Scholar 

  • Tesh RB, Peralta PH, Johnson KM (1969) Ecologic studies of vesicular stomatitis virus. I. Prevalence of infection among animals and humans living in an area of endemic VSV activity. Am J Epidemiol 90:255–261

    PubMed  Google Scholar 

  • Tordo N, Poch O, Ermine A, Keith G, Rougeon F (1986) Walking along the rabies genome: is the large G-L intergenic region a remnant gene? Proc Natl Acad Sci U S A 83:3914–3918

    PubMed  Google Scholar 

  • Wallack MK, Sivanandham M, Balch CM, Urist MM, Bland KI, Murray D, Robinson WA, Flaherty L, Richards JM, Bartolucci AA, Rosen L (1998) Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III, randomized, double-blind, multicenter vaccinia melanoma oncolysate trial. J Am Coll Surg 187:69–77

    Article  PubMed  Google Scholar 

  • Wertz GW, Perepelitsa VP, Ball LA (1998) Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc Natl Acad Sci U S A 95:3501–3506

    Article  PubMed  Google Scholar 

  • Wertz GW, Moudy R, Ball LA (2002) Adding genes to the RNA genome of vesicular stomatitis virus: positional effects on stability of expression. J Virol 76:7642–7650

    Article  PubMed  Google Scholar 

  • Whelan SP, Ball LA, Barr JN, Wertz GT (1995) Efficient recovery of infectious vesicular stomatitis virus entirely from cDNA clones. Proc Natl Acad Sci U S A 92:8388–8392

    PubMed  Google Scholar 

  • Whelan SP, Wertz GW (1999) The 5′ terminal trailer region of vesicular stomatitis virus contains a position-dependent cis-acting signal for assembly of RNA into infectious particles. J Virol 73:307–315

    PubMed  Google Scholar 

  • Whitt MA, Hnatyszyn HJ, Spruill G, Robison CS, Barnes JD, Jayakar HR, Bauler M, Watanabe M, Sherman P, Allay JA, Barber GN, Steiner MS (2003) Reduction of HIV load and restoration of CD4+ T cells by a novel anti-HIV recombinant vesicular stomatitis virus cytolytic agent (GTx-v311) XII International Conference on Negative Strand Viruses, June 14th–19th 2003, Pisa, Italy

    Google Scholar 

  • Zinkernagel RM (1997) Felix Hoppe-Seyler Lecture 1997. Protective antibody responses against viruses. Biol Chem 378:725–729

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag

About this chapter

Cite this chapter

Finke, S., Conzelmann, KK. (2005). Recombinant Rhabdoviruses: Vectors for Vaccine Development and Gene Therapy. In: Fu, Z.F. (eds) The World of Rhabdoviruses. Current Topics in Microbiology and Immunology, vol 292. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27485-5_8

Download citation

Publish with us

Policies and ethics