Advertisement

One year of time-variable CHAMP-only gravity field models using kinematic orbits

  • Nico Sneeuw
  • Christian Gerlach
  • Lóránt Földváry
  • Thomas Gruber
  • Thomas Peters
  • Reiner Rummel
  • Dražen Švehla
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 128)

Abstract

A full year of champ gravity field solutions has been calculated using the energy integral approach. The monthly solutions in the time frame 03.2002–02.2003 were based solely on kinematic orbits from champ gps orbit tracking and accelerometry. These kinematic orbits have not been contaminated by a priori gravity field information.

Recovery of medium-wavelength time-variable gravity signal from champ is expected to be at the edge of feasibility. This expectation is validated by comparison to an SLR solution of seasonal gravity variations and by comparison to oceanographic and meteorological models. It is shown that the error level of monthly CHAMP solutions is insufficient for revealing these time variations. Orbit decay—and consequently ground track variation—is a main contributor to this effect.

Keywords

champ Jacobi integral time variable gravity field 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cheng, M. K., Gunter, B., Ries, J., Chambers, D. P., & Tapley, B. D. (2003). Temporal variations in the earth’s gravity field from SLR and CHAMP GPS data. In I. N. Tziavos (Ed.), Gravity and Geoid 2002 (pp. 424–431). 3rd meeting of the IGGC, Thessaloniki, Greece.Google Scholar
  2. Gerlach, C., Földvary, L., Švehla, D., Gruber, T., Frommknecht, B., Oberndorfer, H., Peters, T., Rothacher, M., Rummel, R., Sneeuw, N., Steigenberger, P., & Wermuth, M. (2003a). A CHAMP only gravity field model from kinematic orbits using the energy balance approach. Poster presented at EGS-AGU-EUG Joint Assembly, 06–11 April 2003, Nice, France.Google Scholar
  3. Gerlach, C., Földvary, L., Švehla, D., Gruber, T., Wermuth, M., Frommknecht, B., Peters, T., Rothacher, M., Rummel, R., Sneeuw, N., & Steigenberger, P. (2003b). A CHAMP only gravity field model from kinematic orbits using the energy integral. Geoph. Res. Letters. subm.Google Scholar
  4. Gerlach, C., Sneeuw, N., Visser, P., & Švehla, D. (2003c). Champ gravity field recovery using the energy balance approach. Adv. Space Res., 1, 73–80.Google Scholar
  5. Gruber, T. & Peters, T. (2003). Identification of mass variations from a series of global gravity field models, a simulation study. Poster presented at IUGG 2003, Sapporo, Japan.Google Scholar
  6. Han, S.-C., Jekeli, C., & Shum, C. K. (2002). Efficient gravity field recovery using in situ disturbing potential observables from CHAMP. Geophys. Res. Letters, 29(16). DOI 10.1029/2002GL015180.Google Scholar
  7. Reigber, C., Schwintzer, P., Neumayer, K.-H., Barthelmes, F., König, R., Förste, C., Balmino, G., Biancale, R., Lemoine, J.-M., Loyer, S., Bruinsma, S., Perosanz, F., & Fayard, T. (2003). The CHAMP-only earth gravity field model EIGEN-2. Adv. Space Res. accepted.Google Scholar
  8. Sneeuw, N. (2001). Satellite geodesy on the torus: Block-diagonality from a semi-analytical approach. In M. G. Sideris (Ed.), Gravity, Geoid and Geodynamics, volume 123 of IAG Symposia (pp. 137–142).: IAG Springer-Verlag. GGG2000, Banff, Canada.Google Scholar
  9. Sneeuw, N., Gerlach, C., Švehla, D., & Gruber, C. (2003). A first attempt at time-variable gravity recovery from CHAMP using the energy balance approach. In I. N. Tziavos (Ed.), Gravity and Geoid 2002 (pp. 237–242). 3rd meeting of the IGGC, Thessaloniki, Greece.Google Scholar
  10. Švehla, D. & Rothacher, M. (2003a). Kinematic and reduced-dynamic precise orbit determination of CHAMP satellite over one year using zero-differences. Poster presented at EGS-AGU-EUG Joint Assembly, 06–11 April 2003, Nice, France.Google Scholar
  11. Švehla, D. & Rothacher, M. (2003b). Kinematic and reduced-dynamic precise orbit determination of low earth orbiters. Adv. Space Res., 1, 47–56.Google Scholar
  12. Velicogna, I., Wahr, J., & Van den Dool, H. (2001). Can surface pressure be used to remove atmospheric contributions from GRACE data with sufficient accuracy to recover hydrological signals? J Geophys. Res., 106(B8), 16 415–16 434.CrossRefGoogle Scholar
  13. Visser, P. N. A. M., Sneeuw, N., & Gerlach, C. (2003). Energy integral method for gravity field determination from satellite orbit coordinates. I Geodesy, 77, 207–216. DOI 10.1007/s00190-003-0315-8.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • Nico Sneeuw
    • 1
  • Christian Gerlach
    • 2
  • Lóránt Földváry
    • 2
  • Thomas Gruber
    • 2
  • Thomas Peters
    • 2
  • Reiner Rummel
    • 2
  • Dražen Švehla
    • 2
  1. 1.Department of Geomatics EngineeringUniversity of CalgaryCalgary
  2. 2.Institut für Astronomische und Physikalische GeodäsieTechnische Universität MünchenMünchen

Personalised recommendations