Advertisement

Efficient Stochastic Orbit Modeling Techniques using Least Squares Estimators

  • A. Jäggi
  • G. Beutler
  • U. Hugentobler
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 128)

Abstract

Reduced-dynamic orbit determination for spaceborne GPS receivers of low Earth orbiting satellites is a successful method promising highest precision. We review the principles of (reduced) dynamic orbit determination and develop the mathematical background for different efficient stochastic orbit parametrizations (e.g., piecewise constant accelerations which provide not only continuous but also differentiable orbits) using least squares methods. Simulated as well as real data from the CHAMP GPS receiver show, to some extent, the equivalence of the different parametrizations and reveal the impressive performance of stochastic orbit modeling techniques. Independent comparisons with orbits determined by other groups and validations with SLR measurements show that our orbits are of high quality.

Key words

Low Earth orbiter reduced-dynamic orbit determination stochastic orbit parametrization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bertiger, W., Y. Bar-Sever, E. Christensen, E. Davis, J. Guinn, B. Haines, R. Ibanez-Meier, J. Jee, S. Lichten, W Melbourne, R. Muellerschoen, T. Munimson, Y. Vigue, S. Wu, T. Yunck, B. Schutz, P. Abusali, H. Rim, M. Watkins, P. Willis (1994). GPS Precise: Tracking of TOPEX/POSEIDON: Results and Implication Journal of Geophysical Research, 99(C 12): 24 449–24 464.Google Scholar
  2. Beutler, G., E. Brockmann, W. Gurtner, U. Hugentobler, L. Mervart, M. Rothacher (1994). Extended orbit modeling techniques at the CODE processing center of the international GPS service for geodynamics (IGS): theory and initial results. Manuscripta Geodetica, 19:367–386Google Scholar
  3. Bock, H., U. Hugentobler, T.A. Springer, G. Beutler (2002). Efficient Precise Orbit Determination of LEO Satellites using GPS. Advanced Space Research, 30/2, pp. 295–300.CrossRefGoogle Scholar
  4. Boomkamp, H. (2002). The CHAMP Orbit Comparison Campaign. In: First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, edited by C. Reigber et al., pp. 53–58, Springer, Berlin, ISBN 3-540-00206-5.Google Scholar
  5. Kursinski, E.R., G.A. Hajj, J.T. Schofield, R.P. Linfield, K.R. Hardy (1997). Observing Earth’s Atmosphere with Radio Occultation Measurements Using the Global Positioning System. Journal of Geophysical Research, 102(D19): 23 429–23 465.CrossRefGoogle Scholar
  6. Reigber, Ch., G. Balmino, P. Schwintzer, R. Biancale, A. Bode, J.-M. Lemoine, R. Koenig, S. Loyer, H. Neumayer, J.-C. Marty, F. Barthelmes, F. Perosanz, SY. Zhu (2002). A High Quality Global Gravity Field Model from CHAMP GPS Tracking Data and Accelerometry (EIGEN-1S). Geophysical Research Letters, 29(14),10.1029/2002GL015064.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • A. Jäggi
    • 1
  • G. Beutler
    • 1
  • U. Hugentobler
    • 1
  1. 1.Astronomical InstituteUniversity of BerneBerneSwitzerland

Personalised recommendations