Advertisement

Time Evolution of the Terrestrial Reference Frame

  • D. Angermann
  • B. Meisel
  • M. Krügel
  • H. Müller
  • V. Tesmer
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 128)

Abstract

This paper investigates the time evolution of the terrestrial reference frame (TRF). We analysed time series of site positions and datum parameters obtained from VLBI, SLR, GPS and DORIS solutions with respect to non-linear motions (e.g. jumps, seasonal signals) and systematic differences. The time series of the translation and scale parameters were used to identify solution- and technique-related problems, and to investigate the contribution of the different techniques to realise the TRF origin and scale. The position time series reveal non-linear motions and jumps for many sites, which have to be considered for future TRF realisations.

Keywords

Terrestrial Reference Frame ITRF VLBI SLR GPS DORIS analysis of time series 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi, Z., P. Sillard, C. Boucher (2002). ITRF2000: A New Release of the International Terrestrial Reference Frame for Earth Science Applications. J. Geophysical Res., 107(B10), 2214, doi:10.1029/2001JB000561.CrossRefGoogle Scholar
  2. Angermann, D., M. Gerstl, R. Kelm, H. Müller, W. Seemüller, M. Vei (2002a). Time Evolution of SLR Reference Frame. Adv. in Space Res., Vol. 30/2, pp. 201–206, Elsevier.CrossRefGoogle Scholar
  3. Angermann, D., H. Mülller, M. Gerstl (2002b). Geocenter variations derived from SLR data to LAGEOS 1 and 2. In: Vistas for Geodesy in the New Millennium, IAG Symposia, J. Adam and K.-P. Schwarz (eds), Vol. 125, pp. 30–35.Google Scholar
  4. Blewitt, G. D., Lavallee, P. Clarke, K. Nurutdinov (2001). A new global mode of Earth deformation: Seasonal cycle detected. Science, 294(5550), pp. 2342–2345.CrossRefGoogle Scholar
  5. Blewitt (2003). Self-consistency in reference frames, geocenter definition, and surface loading of the solid Earth. J. Geophys. Res., Vol. 108, No. B2, 2103, doi: 10.1029/2002JB002082.CrossRefGoogle Scholar
  6. Dong, D., T. Yunck, M. Heflin (2003). Origin of the International Terrestrial Reference Frame. J. Geophys. Res., Vol. 108, No. B4, 2200, doi: 10.1029/2002JB002035.CrossRefGoogle Scholar
  7. Ferland, R. (2002). Activities of the International GPS Service IGS Reference Frame Working Group. In: Vistas for Geodesy in the New Millennium, IAG Symposia, J. Adam and K.-P. Schwarz (eds), Vol. 125, pp. 3–8, Springer.Google Scholar
  8. Herring, T. (2002). Personal Communication.Google Scholar
  9. Kaniuth, K., and S. Huber (2003). An assessment of radome effects on height estimates in the EUREF network. Mitt. Bundesamt für Kartographie und Geodäsie, 29, pp. 97–102.Google Scholar
  10. Kaniuth, K., H. Müller, W. Seemüller (2002). Displacement of the space geodetic observatory Arequipa due to recent earthquakes. Zeitschrift für Vermessungswesen, Heft 4, pp. 238–243, Witwer.Google Scholar
  11. Klotz, J., D. Angermann, G.W. Michel, R. Porth, C. Reigber, J. Reinking, J. Viramonte, R. Perdomo, V.H. Rios, S. Barientos, R. Barriga, O. Cifuentes (1999). GPS-derived deformation of the Central Andes including the 1995 Antofagasta Mw=8.0 Earthquake. Pure and Appl. Geophysics, 154, pp. 709–730.CrossRefGoogle Scholar
  12. Klotz, J., G. Khazaradze, D. Angermann, C. Reigber, R. Perdomo, O. Cifuentes (2001). Earthquake cycle dominates contemporary crustal deformation in Central and Southern Andes. Earth and Planetary Science Letters, 193, pp. 437–446, Elsevier.CrossRefGoogle Scholar
  13. Ma, C., M. Feissel (1997). Definition and Realisation of the International Celestial Reference System by Astrometry of Extragalactic Objects. IERS Technical Note 23, Paris.Google Scholar
  14. Rothacher, M. (2002). Estimation of station heights with GPS. In: Vertical Reference Systems, IAG Symposia, H. Drewes, A. Dodson, L. Fortes, L. Sanchez, P. Sandoval (eds), Vol. 124, pp. 81–90, Springer.Google Scholar
  15. Tesmer, V. (2002). VLBI Solution DGFI01RO1 based on least-squares estimation using OCCAM5.0 and DOGS-CS. In: IVS 2002 General Meeting Proceedings, N. Vandenberg and N.K. Baver (eds), NASA/CP-2002-210002.Google Scholar
  16. Titov, O., V. Tesmer, J. Böhm (2001). OCCAM5.0 Users Guide, AUSLIG Technical Report 7, Canberra.Google Scholar
  17. Willis, P. (2003). Personal Communication.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • D. Angermann
    • 1
  • B. Meisel
    • 1
  • M. Krügel
    • 1
  • H. Müller
    • 1
  • V. Tesmer
    • 1
  1. 1.Deutsches Geodätisches Forschungsinstitut (DGFI)MünchenGermany

Personalised recommendations