Advertisement

A Multi-Base-Station Approach for Long Range Differential GNSS Positioning of Airborne Sensors

  • N. S. Kjorsvik
  • O. Ovstedal
  • J. G. G. Svendsen
  • L. E. Blankenberg
Conference paper
Part of the International Association of Geodesy Symposia book series (IAG SYMPOSIA, volume 128)

Abstract

In airborne applications (e.g. photogrammetry, gravimetric measurements and laser scanning) the positions of the sensors are determined by Global Navigation Satellite Systems (GNSS). Traditionally, this has been done with differential techniques using GNSS observations from one reference station only. The distance and height dependent errors may be significant in airborne differential positioning using one reference station only. In this work the alternative approach of Multi-Base-Station (MBS) differential processing is discussed and verified. In the MBS approach, data from a network of permanent reference stations are used to estimate the distance dependent errors. Improved reference data can be materialized as e.g. observations from a Virtual Reference Station (VRS). Results from a test flight over a dedicated test field in Fredrikstad, Norway, are presented. Reference positions are estimated using photogrammetric aerial triangulation and compared to the positions from various GNSS processing strategies. The results verify that the method of Multi-Base-Station processing gives significantly more precise and reliable results than the traditional approach using one base station only.

Keywords

GNSS Virtual Reference Stations Airborne Sensors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, C., Ware, R., Rocken, C., & Braun, J. (2000). Obtaining single path phase delays from GPS double differences. Geophysical Research Letters, 27(17), 2661–2664.CrossRefGoogle Scholar
  2. Blankenberg, L. (2002). GPS-supported aerial triangulation in theory and practice. Ph.D. thesis, Agricultural University of Norway. ISBN 8257504556.Google Scholar
  3. Jäggi, A., Beutler, G., & Hugentobler, U. (2001). Using double difference information from network solutions to generate observations for a virtual GPS reference receiver. Presented at IAG 2001 Scietific Assembly. Budapest, Hungary.Google Scholar
  4. Kjorsvik, N. (2003). Analysis of data from permanent GNSS networks. Ph.D. thesis (in preparation).Google Scholar
  5. Leick, A. (1995). GPS Satellite Surveying. John Wiley and Sons, Inc., 2nd edition. ISBN 0471306266.Google Scholar
  6. Mader, G. (2003). GPS Antenna Calibration at the National Geodetic Survey. http://www.ngs.noaa.gov/ANTCAL/Files/summary.html. Last visited June 16th 2003.Google Scholar
  7. Mervart, L. (1995). Ambiguity Resolution Techniques in Geodetic and Geodynamic Applications of the Global Positioning System. Ph.D. thesis, University of Berne, Switzerland.Google Scholar
  8. Niell, A. E. (1996). Global mapping functions for the atmosphere delay at radio wavelengths. Journal of Geophysical Research, 101(B2), 3227–3246.CrossRefGoogle Scholar
  9. Ovstedal, O. (2001). A study of some aspects concerning georeferencing with the Global Positioning System. Ph.D. thesis, Agricultural University of Norway. ISBN 8257504505.Google Scholar
  10. Raquet, J. (1998). Development of a method for kinematic GPS carrier phase ambiguity resolution using multiple reference receivers. Ph.D. thesis, University of Calgary.Google Scholar
  11. Wanninger, L. (1997). Real-Time Differential Error Modelling in Regional Reference Station Networks. In IAG Symposia Vol 118: Advances in Positioning and Reference Frames, pages 86–92.Google Scholar
  12. Wanninger, L. (2000). Präzise Positionierung in regionalen GPS-Referenzstationsnetzen. Number 508 in Reihe C. Deutschen Geoddstischen Kommission, München.Google Scholar
  13. Wanninger, L. (2002). Aus zwei macht eins: Kombination der Beobachtungen von GPS-Referenzstationspaaren. Allgemeine Vermessungs-Nachrichten, 109(10), 352–358.Google Scholar
  14. Wübbena, G., Bagge, A., & Schmitz, M. (2001). RTK Networks based on Geo++ GNSMART (R), Concepts, Implementation, Results. In Proceedings of ION GPS 2001, Salt Lake City, Utah, USA. Institute of Navigation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2005

Authors and Affiliations

  • N. S. Kjorsvik
    • 1
  • O. Ovstedal
    • 1
  • J. G. G. Svendsen
    • 1
  • L. E. Blankenberg
    • 2
  1. 1.Dept. of Mapping SciencesAgricultural University of NorwayNorway
  2. 2.Norkart asSandvikaNorway

Personalised recommendations