Skip to main content

Stretching Rate of Passive Lines in Turbulence

  • Conference paper
  • 862 Accesses

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 101))

Abstract

The temporal evolution of passive lines in turbulence of an incompressible viscous fluid is simulated numerically for the Taylor-length Reynolds umber up to 252. The passive lines elongate in average exponentially in time. The mean exponential stretching rate γ obeys the Kolmogorov scaling law, i.e. γ = 0.17/τ η, τ η being the Kolmogorov time if it is estimated with chopped lines of a fixed length of O(\(\mathcal{L}\)), \(\mathcal{L}\) being the energy-containing-eddy length. However, the mean stretching rate estimated with natural (or unchopped) passive lines increases with Reynolds number more rapidly than at the rate of the Kolmogorov scaling law.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kida S, Miura H (1998) Identification and analysis of vortical structures. Eur. J. Mech. B/Fluids 17: 471–488.

    Article  Google Scholar 

  2. Kida S, Miura H (1998) Swirl condition in low-pressure vortex. J. Phys. Soc. Jpn. 67: 2166–2169.

    Article  Google Scholar 

  3. Makihara T, Kida S (2004) in preparation.

    Google Scholar 

  4. Siggia E.D (1985) Collapse and amplification of a vortex filament. Phys. Fluids 28: 794–805.

    Article  MATH  Google Scholar 

  5. Kida S., Miura H., Adachi T. (2001) Flow strucuture visualization by lowpressure vortex. In: Vassilicos J.C, (ed) Intermittency of turbulent flows. Vol. 69. Cambridge University Press, Cambridge. pp. 262–276.

    Google Scholar 

  6. Makihara T, Kida S, Miura H (2002) Automatic tracking of low-pressure vortex. J. Phys. Soc. Jpn. 71: 1622–1625.

    Article  Google Scholar 

  7. Goto S, Kida S (2003) Enhanced stretching of material lines by antiparallel vortex pairs in turbulence. Fluid Dyn. Res. 33: 403–431.

    Article  MathSciNet  Google Scholar 

  8. Kida S, Goto S (2002) Line statistics: stretching rate of passive lines in turbulence. Phys. Fluids 14: 352–361.

    Article  MathSciNet  Google Scholar 

  9. Goto S, Kida S (2002) A multiplicative process of material line stretching by turbulence. J. Turbulence 3: 17.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kida, S. (2005). Stretching Rate of Passive Lines in Turbulence. In: Peinke, J., Kittel, A., Barth, S., Oberlack, M. (eds) Progress in Turbulence. Springer Proceedings in Physics, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27401-4_40

Download citation

  • DOI: https://doi.org/10.1007/3-540-27401-4_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23216-2

  • Online ISBN: 978-3-540-27401-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics