Skip to main content

Interaction of Low-Energy Ions and Hydrocarbon Radicals with Carbon Surfaces

  • Chapter
Nuclear Fusion Research

Part of the book series: Springer Series in Chemical Physics ((CHEMICAL,volume 78))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Federici, C.H. Skinner, J.N. Brooks, J.P. Coad, C. Grisolia, A.A. Haasz, A. Hassanein, V. Philipps, C.S. Pitcher, J. Roth, W.R. Wampler, D.G. Whyte: Plasma-material interactions in current tokamaks and their implications for next step fusion reactors. Nucl. Fusion 41, 1967 (2001)

    Article  ADS  Google Scholar 

  2. G. Federici, C.H. Skinner: this volume

    Google Scholar 

  3. P. Andrew, D. Brennan, J.P. Coad, J. Ehrenberg, M. Gadeberg, A. Gibson, M. Groth, J. How, O.N. Jarvis, H. Jensen, R. Lässer, F. Marcus, R. Monk, P. Morgan, J. Orchard, A. Peacock, R. Pearce, M. Pick, A. Rossi, B. Schunke, M. Stamp, M. von Hellermann, D.L. Hillis, J. Horgan: Tritium recycling and retention in JET. J. Nucl. Mater. 266–269, 153 (1999)

    Article  Google Scholar 

  4. J.P. Coad, N. Bekris, J.D. Elder, S.K. Erents, D.E. Hole, K.D. Lawson, G.F. Matthews, R.D. Penzhorn, P.C. Stangeby: Erosion/deposition issues at JET. J. Nucl. Mater. 290–293, 224 (2001)

    Article  Google Scholar 

  5. M. Mayer, V. Phillips, P. Wienhold, H.G. Esser, J. von Seggern, M. Rubel: Hydrogen inventories in nuclear fusion devices. J. Nucl. Mater. 290–293, 381 (2001)

    Article  Google Scholar 

  6. V. Rohde, H. Maier, K. Krieger, R. Neu, J. Perchermaier, and ASDEX Upgrade Team. Carbon layers in the divertor of ASDEX Upgrade. J. Nucl. Mater 290–293, 317 (2001)

    Article  Google Scholar 

  7. V. Rohde, M. Mayer, and the ASDEX Upgrade Team: On the formation of a-C:D layers and parasitic plasmas underneath the roof baffle of the ASDEX Upgrade divertor. J. Nucl. Mater 313–316, 337 (2003)

    Article  Google Scholar 

  8. V. Rohde, M. Mayer, and the ASDEX Upgrade Team: Characterisation and formation of a-C:D layers below the divertor of ASDEX Upgrade. Physica Scripta T103, 25 (2003)

    Article  ADS  Google Scholar 

  9. M. Meier, A. von Keudell, W. Jacob: Consequences of the temperature-and flux-dependent sticking coefficient of methyl radicals for nuclear fusion experiments. Nuclear Fusion 43, 25 (2003)

    Article  ADS  Google Scholar 

  10. G. Federici, R. Anderl, J.N. Brooks, R. Causey, J.P. Coad, D. Cowgill, R. Doerner, A. Haasz, G. Longhurst, S. Luckhardt, D. Mueller, A. Peacock, M. Pick, C.H. Skinner, W. Wampler, K. Wilson, C. Wong, C. Wu, D. Youchison: Tritium inventory in the ITER PFC’s: Predictions, uncertainties, R&D status and priority needs. Fusion Engineering and Design 39–40, 445 (1998)

    Article  Google Scholar 

  11. V.S. Voitsenya, A.F. Bardamid, V.N. Bondarenko, W. Jacob, V.G. Konovalov, S. Masuzaki, O. Motojima, D.V. Orlinskij, V.L. Poperenko, I.V. Ryzhkov, A. Sagara, A.F. Shtan, S.I. Solodovchenko, M.V. Vinnichenko: Some problems arising due to plasma-surface-interaction for operation of the in-vessel mirrors in a fusion reactor. J. Nucl. Mater. 290–293, 336 (2001)

    Article  Google Scholar 

  12. A. Grill: Diamond-like carbon: State of the art. Diamond Relat. Mater. 8, 428 (1999)

    Article  Google Scholar 

  13. J. Robertson: Diamond-like amorphous carbon. Review of Deposition methods, properties, and applications. Mat. Sci. Eng. Reports 37, 129 (2002)

    Article  Google Scholar 

  14. S.R.P. Silva: Properties of Amorphous Carbon. EMIS Datareviews Series No. 29, 2003

    Google Scholar 

  15. W. Jacob: Surface reactions during growth and erosion of hydrocarbon films. Thin Solid Films 326, 1 (1998)

    Article  ADS  Google Scholar 

  16. A. von Keudell, W. Jacob: Growth and erosion of hydrocarbon films, investigated by in situ ellipsometry. J. Appl. Phys. 79, 1092 (1996)

    Article  ADS  Google Scholar 

  17. T. Schwarz-Selinger, A. von Keudell, W. Jacob: Plasma chemical vapor deposition of hydrocarbon films: The influence of hydrocarbon source gas on the film properties. J. Appl. Phys. 86, 3988 (1999)

    Article  ADS  Google Scholar 

  18. P. Koidl, P. Oelhafen: Amorphous hydrogenated carbon films. In E-MRS Symp. Proc. Vol. XVII Les Editions des Physique, Les Ulis 1987

    Google Scholar 

  19. P. Koidl, C. Wild, B. Dischler, J. Wagner, M. Ramsteiner: Materials Science Forum 52–53, 41 (1989)

    Google Scholar 

  20. A. von Keudell, W. Jacob, W. Fukarek: Role of hydrogen ions in PECVD of hydrocarbon films. Appl. Phys. Lett. 66, 1322 (1995)

    Article  ADS  Google Scholar 

  21. S. Kaplan, F. Jansen, M. Machonkin: Characterization of amorphous carbonhydrogen films by solid-state nuclear magnetic resonance. Appl. Phys. Lett. 47, 750 (1985)

    Article  ADS  Google Scholar 

  22. M.A. Tamor, W.C. Vassell, K.R. Carduner: Appl. Phys. Lett. 58, 592 (1991)

    Article  ADS  Google Scholar 

  23. A. Grill, B.S. Meyerson, V. Patel, J.A. Reimer, M.A. Petrich: Inhomogeneous carbon bonding in hydrogenated amorphous carbon films. J. Appl. Phys. 61, 2874 (1987)

    Article  ADS  Google Scholar 

  24. C. Jäger, J. Gottwald, H.W. Spiess, R.J. Newport: Structural properties of amorphous hydrogenated carbon. III. NMR investigations. Phys. Rev. B 50, 846 (1994)

    Article  ADS  Google Scholar 

  25. W. Möller, B.M.U. Scherzer: Subsurface molecule formation in hydrogen-implanted graphite. Appl. Phys. Lett. 50, 1870 (1987)

    Article  ADS  Google Scholar 

  26. J.C. Angus, F. Jansen: Dense “diamondlike” hydrocarbons as random covalent networks. J. Vac. Sci. Technol. A, 6, 1778 (1988)

    Article  ADS  Google Scholar 

  27. W. Jacob, W. Möller: On the structure of thin hydrocarbon films. Appl. Phys. Lett. 63, 1771 (1993)

    Article  ADS  Google Scholar 

  28. A. von Keudell: Formation of polymer-like hydrocarbon films from beams of methyl radicals and atomic hydrogen. Thin Solid Films 402, 1 (2002)

    Article  ADS  Google Scholar 

  29. W. Jacob, C. Hopf, A. von Keudell, T. Schwarz-Selinger: Surface loss probabilities of hydrocarbon radicals on amorphous hydrogenated carbon film surfaces: Consequences for the formation of re-deposited layers in fusion experiment. In: Hydrogen Recycling at Plasma Facing Materials, Chung-Hsiung Wu (ed.) (Kluwer Academic Publishers 2000) pp. 331–337

    Google Scholar 

  30. A. von Keudell, C. Hopf, T. Schwarz-Selinger, W. Jacob: Surface loss probabilities of hydrocarbon radicals on amorphous hydrogenated carbon film surfaces: Consequences for the formation of re-deposited layers in fusion experiments. Nuclear Fusion 39, 1451 (1999)

    Article  ADS  Google Scholar 

  31. A. Schenk, J. Biener, B. Winter, C. Lutterloh, U.A. Schubert, J. Küppers: Mechanism of chemical erosion of sputter-deposited C:H films. Appl. Phys. Lett. 61, 2414 (1992)

    Article  ADS  Google Scholar 

  32. A. Schenk, B. Winter, J. Biener, C. Lutterloh, U. Schubert, J. Küppers: Growth and thermal decomposition of ultrathin ion-beam deposited C:H films. J. Appl. Phys. 77, 2462 (1995)

    Article  ADS  Google Scholar 

  33. V. Philipps, E. Vietzke, M. Erdweg, A. Flaskamp: Thermal desorption of hydrogen and various hydrocarbons from graphite bombarded with thermal and energetic hydrogen. J. Nucl. Mater. 145–147, 292 (1987)

    Article  Google Scholar 

  34. J. Ristein, R.T. Stief, L. Ley, W. Beyer: A comparative analysis of a—C:H by infrared spectroscopy and mass selected thermal effusion. J. Appl. Phys. 84, 3836 (1998)

    Article  ADS  Google Scholar 

  35. K. Maruyama, W. Jacob, J. Roth: Erosion behavior of soft, amorphous deuterated carbon films by heat treatment in air and under vacuum. J. Nucl. Mater. 264, 56 (1999)

    Article  ADS  Google Scholar 

  36. D.A. Doughty, J.R. Doyle, G.H. Lin, A. Gallagher: Surface reaction probability of film-producing radicals in silane glow discharge. J. Appl. Phys. 67, 6220 (1990)

    Article  ADS  Google Scholar 

  37. C. Hopf, K. Letourneur, W. Jacob, T. Schwarz-Selinger, A. von Keudell: Surface loss probabilities of the dominant neutral precursors for film growth in methane and acetylene discharges. Appl. Phys. Lett. 74, 3800 (1999)

    Article  ADS  Google Scholar 

  38. C. Hopf, T. Schwarz-Selinger, W. Jacob, A. von Keudell: Surface loss probabilities of hydrocarbon radicals on amorphous hydrogenated carbon film surfaces. J. Appl. Phys 87, 2719 (2000)

    Article  ADS  Google Scholar 

  39. A. Yuuki, Y. Matsui, K. Tachibana: A study on radical fluxes in silane plasma CVD from trench coverage analysis. Jpn. J. Appl. Phys. 28, 212 (1989)

    Article  ADS  Google Scholar 

  40. A. Matsuda, K. Nomoto, Y. Takeuchi, A. Suzuki, Y. Yuuki, J. Perrin: Temperature dependence of the sticking and loss probabilities of silyl radicals on hydrogenated amorphus silicon. Surf. Sci. 227, 50 (1990)

    Article  Google Scholar 

  41. A. Nuruddin, J.R. Doyle, J.R. Abelson: Surface reaction probability in hydrogenated amorphous silicon growth. J. Appl. Phys. 76, 3123 (1994)

    Article  ADS  Google Scholar 

  42. M. Mayer, V. Rohde, A. von Keudell, ASDEX Upgrade Team: Characterisation of deposited hydrocarbon layers below the divertor and in the pumping ducts of ASDEX Upgrade. J. Nucl. Mater. 313–316, 429 (2003)

    Article  Google Scholar 

  43. C.C. Tsai, J.C. Knights, G. Chang, B. Wacker: Film formation mechanisms in the plasma deposition of hydrogenated amorphous silicon. J. Appl. Phys. 59, 2998 (1986)

    Article  ADS  Google Scholar 

  44. A. von Keudell, T. Schwarz-Selinger, W. Jacob: Simultaneous interaction of methyl radicals and atomic hydrogen with amorphous hydrogenated carbon films. J. Appl. Phys. 89, 2979 (2001)

    Article  ADS  Google Scholar 

  45. M. Meier, A. von Keudell: Hydrogen elimination as a key step for the formation of a—C:H films. J. Appl. Phys. 90, 3585 (2001)

    Article  ADS  Google Scholar 

  46. M. Meier A. von Keudell: Temperature dependence of the methyl sticking coefficient on hydrocarbon film surfaces. J. Chem. Phys. 116, 5125 (2002)

    Article  ADS  Google Scholar 

  47. C. Hopf, A. von Keudell, W. Jacob: Direct verification of the ion-neutral synergism during hydrocarbon film growth. J. Appl. Phys. 93, 3352 (2003)

    Article  ADS  Google Scholar 

  48. C. Hopf, A. von Keudell, W. Jacob: Chemical sputtering of hydrocarbon films. J. Appl. Phys. 94, 2373 (2003)

    Article  ADS  Google Scholar 

  49. W. Jacob, C. Hopf, A. von Keudell, M. Meier, and T. Schwarz-Selinger: Particle-beam experiment to study heterogeneous surface reactions relevant to plasma-assisted thin film growth and etching. Rev. Sci. Instrum. 74, 5123 (2003)

    Article  ADS  Google Scholar 

  50. M. Shiratani, J. Jolly, H. Videlot, J. Perrin: Surface reaction kinetics of CH3 in CH4 rf discharge studied by time-resolved threshold ionization mass spectrometry. Jpn. J. Appl. Phys. 36, 4752 (1997)

    Article  ADS  Google Scholar 

  51. M. Mayer: Deposition and erosion studies, Final report for task JW0-FT-3.4, Fusion Technology Task Force at JET. Technical report (2003)

    Google Scholar 

  52. M. Katyiar, J.R. Abelson: Methods to enhance absorption signals in infrared reflectance spectroscopy: A comparison using optical simulations. J. Vac. Sci. Technol. A 13, 2005 (1995)

    Article  ADS  Google Scholar 

  53. J. Küppers: The hydrogen surface chemistry of carbon as a plasma facing material. Surf. Sci. Rep. 22, 249 (1995)

    Article  ADS  Google Scholar 

  54. J. Robertson, E.P. O’Reilly: Electronic and atomic structure of amorphous carbon. Phys. Rev. B 35, 2946 (1987)

    Article  ADS  Google Scholar 

  55. T. Zecho, B.D. Brandner, J. Biener, J. Küppers: Hydrogen-induced chemical erosion of a-C:H thin films: Product distribution and temperature dependence. J. Phys. Chem. B 105, 6194 (2001)

    Article  Google Scholar 

  56. E. Vietzke, K. Flaskamp, V. Phillips, G. Esser, P. Wienhold, J. Winter: Chemical erosion of amorphous hydrogenated carbon films by atomic and energetic hydrogen. J. Nucl. Mater. 145–147, 443 (1987)

    Article  Google Scholar 

  57. E. Vietzke, A.A. Haasz: Chemical erosion. In: W.O. Hofer and J. Roth (eds.): Physical Processes of the Interaction of Fusion Plasmas with Solids (Academic Press 1996) p. 135

    Google Scholar 

  58. A. Horn, A. Schenk, J. Biener, B. Winter, C. Lutterloh, M. Wittmann, J. Küppers: H atom impact induced chemical erosion reaction at C:H film surfaces. Chem. Phys. Lett. 231, 193 (1994)

    Article  ADS  Google Scholar 

  59. A. von Keudell, T. Schwarz-Selinger, M. Meier, W. Jacob: Direct identification of the synergism between methyl radicals and atomic hydrogen during growth of amorphous hydrogenated carbon films. Appl. Phys. Lett. 76, 676 (2000)

    Article  ADS  Google Scholar 

  60. A. von Keudell, T. Schwarz-Selinger, M. Meier, W. Jacob: Erratum: Direct identification of the synergism between methyl radicals and atomic hydrogen during growth of amorphous hydrogenated carbon films. Appl. Phys. Lett. 77, 459 (2000)

    Article  ADS  Google Scholar 

  61. M. Meier, R. Preuss, V. Dose: Interaction of CH3 and H with amorphous hydrocarbon surfaces: Estimation of reaction cross-sections using Bayesian probability theory. New J. Phys. 5, 133 (2003)

    Article  ADS  Google Scholar 

  62. P. Träskelin, E. Salonen, K. Nordlund, A.V. Krasheninnikov, J. Keinonen, C.H. Wu: Molecular dynamics simulation of CH3 sticking on carbon surfaces. J. Appl. Phys. 93, 1826 (2003)

    Article  ADS  Google Scholar 

  63. J. Roth, J. Bohdansky: Sputtering of graphite with light ions at energies between 20 and 1000 eV. Nucl. Instrum. Meth. B 23, 549 (1987)

    Article  ADS  Google Scholar 

  64. M. Balden, J. Roth: New weight-loss measurements of the chemical erosion yields of carbon materials under hydrogen ion bombardment. J. Nucl. Mater. 280, 39 (2000)

    Article  ADS  Google Scholar 

  65. C. García-Rosales, W. Eckstein, J. Roth: Revised formulae for sputtering data. J. Nucl. Mater. 218, 8 (1994)

    Article  Google Scholar 

  66. J. Roth, C. García-Rosales: Analytic description of the chemical erosion of graphite by hydrogen ions. Nucl. Fusion 36, 1647 (1996)

    Article  ADS  Google Scholar 

  67. A.A. Haasz, O. Auciello, P.C. Stangeby, I.S. Youle: Ion-induced synergistic effects for CH4 production from carbon under H+, H0 and H2 impact. J. Nucl. Mater. 128–129, 593 (1984)

    Article  Google Scholar 

  68. J.W. Davis, A.A. Haasz, P.C. Stangeby: Title hydrocarbon formation due to combined H+ ion and H0 atom impact on pyrolytic graphite. J. Nucl. Mater. 155–157, 234 (1988)

    Article  Google Scholar 

  69. E. Vietzke, K. Flaskamp, V. Philipps: Hydrogen formation in the reaction of atomic hydrogen with pyrolytic graphite and the synergistic effect of argon ion bombardment. J. Nucl. Mater. 111–112, 763 (1982)

    Article  Google Scholar 

  70. B.V. Mech, A.A. Haasz, J.W. Davis: Model for the chemical erosion of graphite due to low-energy H+ and D+ impact. J. Appl. Phys. 84, 1655 (1998)

    Article  ADS  Google Scholar 

  71. E. Vietzke, K. Flaskamp, V. Philipps: Differences in the CH3 and CH4 formation from graphite under bombardment with hydrogen ions and hydrogen atoms/argon ions. J. Nucl. Mater. 128–129, 545 (1984)

    Article  Google Scholar 

  72. E. Vietzke: Energy distribution of CD4 and CD3 chemically released from graphite by D+ and D0/Ne+ impact. J. Nucl. Mater. 290–293, 158 (2001)

    Article  Google Scholar 

  73. C. Hopf, A. von Keudell, W. Jacob: Chemical sputtering of hydrocarbon films by low-energy Ar+ ion and H atom impact. Nucl. Fusion 42, L27 (2002)

    Article  ADS  Google Scholar 

  74. W. Eckstein: Computer Simulation of Ion-Solid Interactions. Springer Series in Materials Science, 1st edn. (Springer, Berlin and Heidelberg 1991)

    Google Scholar 

  75. W. Eckstein, A. Sagara, K. Kamada: Incident angle dependence of sputtering yields for hydrogen bombardment of light elements. J. Nucl. Mater. 150, 266 (1987)

    Article  ADS  Google Scholar 

  76. W. Möller: Modeling of the sp3/sp2 ratio in ion beam and plasma-deposited carbon films. Appl. Phys. Lett. 59, 2391 (1991)

    Article  ADS  Google Scholar 

  77. W. Möller: Modeling and computer simulation of ion-beam-and plasmaassisted film growth. Thin Solid Films 228, 319 (1993)

    Article  ADS  Google Scholar 

  78. J.W. Coburn, H.F. Winters: Ion-and electron-assisted gas-surface chemistry — an important effect in plasma etching. J. Appl. Phys. 50, 3189 (1979)

    Article  ADS  Google Scholar 

  79. T.J. Chuang: Electron spectroscopy study of silicon surface exposed to XeF2 and the chemisorption of SiF4 on silicon. J. Appl. Phys. 51, 2614 (1980)

    Article  ADS  Google Scholar 

  80. Y.Y. Tu, T.J. Chuang, H.F. Winters: Chemical sputtering of fluorinated silicon. Phys. Rev. B 23, 823 (1981)

    Article  ADS  Google Scholar 

  81. H.F. Winters, J.W. Coburn: Surface science aspects of etching reactions. Surf. Sci. Reports 14, 161 (1992)

    Article  ADS  Google Scholar 

  82. J. Pillath, J. Winter, F. Waelbroek. In: P. Koidl and P. Oelhafen (eds.): Amorphous Hydrogenated Carbon Films E-MRS Symposia Proc., Vol. XVII (Les Editions de Physique, Les Ulis, France 1987) p. 449

    Google Scholar 

  83. W.R. Wampler, D.G. Whyte, C.P.C. Wong, W.P. West: Erosion in the DIII-D divertor by neon-detached plasmas. J. Nucl. Mater. 313, 333 (2003)

    Article  ADS  Google Scholar 

  84. F.L. Tabarés, D. Tafalla, I. Tanarro, V.J. Herrero, A. Islyaikin, C. Maffiotte: Suppresion of hydrogenated carbon film deposition by scavenger techniques and their application to the tritium inventory control in fusion devices. Plas. Phys. Contr. Fusion 44, L37 (2002)

    Article  ADS  Google Scholar 

  85. E. Salonen, K. Nordlund, J. Keinonen, C.H. Wu: Swift chemical sputtering of amorphous hydrogenated carbon. Phys. Rev. B 63, 195415 (2001)

    Article  ADS  Google Scholar 

  86. W. Möller, W. Fukarek, K. Lange, A. von Keudell, W. Jacob: Mechanisms of the deposition of hydrogenated carbon films. Jpn. J. Appl. Phys. 34, 2163 (1995)

    Article  ADS  Google Scholar 

  87. P. Favia, R. Lamendola, R. d’Agostino: The role of substrate temperature and bias in the plasma deposition from tetramethylsilane. Plasma Sources Sci. Technol. 1, 59 (1992)

    Article  ADS  Google Scholar 

  88. R. d’Agostino: Plasma Deposition, Treatment, and Etching of Polymers, Chapter: Plasma Polymerization of Fluorcarbons (Academic Press 1990)

    Google Scholar 

  89. C. Hopf, A. von Keudell, W. Jacob: The influence of hydrogen ion bombardment on plasma-assisted hydrocarbon film growth. Diamond Relat. Mater. 12, 85 (2003)

    Article  Google Scholar 

  90. C. Hopf, W. Jacob, A. von Keudell: Ion-induced surface activation, chemical sputtering, and hydrogen release during plasma-assisted hydrocarbon film growth. J. Appl. Phys. (2005) in print

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jacob, W., Hopf, C., Meier, M., Schwarz-Selinger, T. (2005). Interaction of Low-Energy Ions and Hydrocarbon Radicals with Carbon Surfaces. In: Clark, R.E., Reiter, D.H. (eds) Nuclear Fusion Research. Springer Series in Chemical Physics, vol 78. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27362-X_11

Download citation

Publish with us

Policies and ethics