Skip to main content
  • 1544 Accesses

Abstract

Numerical methods for the solution of boundary layer equations were discussed in Chapter 5 and here the discussion is extended to the Navier -Stokes equations for incompressible and compressible flows. Forms of the equation appropriate for numerical methods are presented in Section 8.2 and turbulence models including those based on algebraic and one and two transport equations are introduced in Section 8.3. Brief discussions of the numerical methods for incompressible and compressible flows are provided in Sections 8.4 and 8.5 respectively and the reader is referred to [1,2] for further information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirsch, C.: Numerical Computation of Internal and External Flows. John Wiley & Sons, 1990.

    Google Scholar 

  2. Cebeci, T., Shao, J. P., Kafyeke, F. and Laurendeau, E.: Computational Fluid Dynamics for Engineers. Horizons Publ., Long Beach, Calif. and Springer, Heidelberg, 2005.

    Google Scholar 

  3. Pulliam, T. H.: Efficient solution methods for the Navier-Stokes equations. Lecture Notes for the Von Karman Institute for Fluid Dynamics Lecture Series: Numerical Techniques for Viscous Flow Computation in Turbomachinery Bladings, Brussels, Belgium, Jan. 20–24, 1986.

    Google Scholar 

  4. Wilcox, D. C: Turbulence Modeling for CFD. DCW Industries, Inc. 5354 Palm Drive, La Canada, Calif., 1998.

    Google Scholar 

  5. Cebeci, T.: Analysis of Turbulent Flows. Elsevier, London, 2004.

    Google Scholar 

  6. Cebeci, T. and Chang, K. C.: An Improved Cebeci-Smith Turbulence Model for Boundary-Layer and Navier-Stokes Methods. 20th Congress of the International Council of the Aeronautical Sciences, paper No. ICAS-96-1.7.3, Sorrento, Italy, 1996.

    Google Scholar 

  7. Johnson, D. A. and King, L. S.: Mathematically Simple Turbulence Closure Model for Attached and Separated Turbulent Boundary Layers. AIAA J., 23, No. 11, 1684–1692, 1985.

    Article  MathSciNet  Google Scholar 

  8. Bradshaw, P., Ferriss, D. H. and Atwell, N. P.: Calculation of Boundary-Layer Development Using the Turbulent Energy Equation. J. Fluid Mech., 23, 593, 1967.

    Article  Google Scholar 

  9. Baldwin, B. S. and Lomax, H.: Thin Layer Approximation of Algebraic Model for Separated Turbulent Flows. AIAA paper No. 78-257, 1978.

    Google Scholar 

  10. Stock, H. W. and Haase, W.: Determination of Length Scales in Algebraic Turbulence Models for Navier-Stokes Methods. AIAA J., 27, No. 1. 5–14, 1989.

    Article  Google Scholar 

  11. Johnson, D. A.: Nonequilibrium Algebraic Turbulence Modeling Considerations for Transonic Airfoils and Wings. AIAA paper No. 92-0026, 1992.

    Google Scholar 

  12. Swanson, R. C. and Turkel, E.: A Multistage Time-Stepping Scheme for the Navier-Stokes Equations. AIAA paper No. 85-0035, 1985.

    Google Scholar 

  13. Cebeci, T.: Turbulence Models and Their Application. Horizons Publ., Long Beach, Calif. and Springer, Heidelberg, 2004.

    Google Scholar 

  14. Spalart, P. R. and Allmaras, S. R.: A One-Equation Turbulence Model for Aerodynamics Flows. AIAA Paper 92-0439, 1992.

    Google Scholar 

  15. Jones, W. P. and Launder, B. E.: The Prediction of Laminarization with a Two-Equation Model of Turbulence. International Journal of Heat and Mass Transfer, 15, 301–314, 1972.

    Article  Google Scholar 

  16. Menter, F. R.: Two-Equation Eddy Viscosity Turbulence Models for Engineering Applications. AIAA J., 32, 1299–1310, 1994.

    Article  Google Scholar 

  17. Yakhot, V. and Orszag, S. A.: Renormalization Group Analysis of Turbulence, 1. Basic Theory, J. Scientific Computing, 1, 3–51. 1986.

    Article  MathSciNet  MATH  Google Scholar 

  18. Chorin, A. J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2, 12, 1967.

    Article  MATH  Google Scholar 

  19. Chorin, A. J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22, 745–762, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  20. Roger, S. E. and Kwak, D.: An upwind differencing scheme for the incompressible Navier-Stokes equations. AIAA J. 8, 43–64, 1991.

    Google Scholar 

  21. Roger, S. E. and Kwak, D.: An upwind differencing scheme for the time accurate incompressible Navier-Stokes equations. AIAA J. 28(2), 253–262, 1990.

    Article  Google Scholar 

  22. Roger, S. E. and Kwak, D. and Kiris, C.: Steady and unsteady solutions of the incompressible Navier-Stokes equations. AIAA J. 4(4), 603–610, 1991.

    Article  Google Scholar 

  23. Ghia, K. N., Yang, J, Oswald, G. A. and Ghia, U.: Study of dynamic stall mechanism using simulation of two-dimensional Navier-Stokes equations. AIAA Paper, 91-0546, 1991.

    Google Scholar 

  24. Wu, J. C.: Theory of aerodynamic force and moment in viscous flows. AIAA Paper, 80-0011, 1980.

    Google Scholar 

  25. Wu, J. C.: Fundamental solutions and numerical methods for flow problems. Int. J. Numer. Methods Fluids 4, 185–201, 1984.

    Article  MATH  Google Scholar 

  26. Beam, R. M. and Warming, R. F.: An implicit factored scheme for the compressible Navier-Stokes equations. AIAA J. 16, 393–401, 1978.

    Article  MATH  Google Scholar 

  27. Steger, J. L. and Warming, R. F.: Flux vector splitting of the inviscid gas dynamic equations with applications to finite-difference methods. J. Comput. Phys. 40, 263–293, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  28. Roc, P. L.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput. Phys. 43, 357–372, 1981.

    Article  MathSciNet  Google Scholar 

  29. Osher, S. and Solomon, F.: Upwind difference schemes for hyperbolic systems of conservation laws. Math. Comput. 38(158), 339–374, 1982.

    Article  MathSciNet  MATH  Google Scholar 

  30. Briley, W. R. and McDonald, H.: Solution of the three-dimensional Navier-Stokes equations by an implicit technique. Proc. Fourth International Conference on Numerical Methods in Fluid Dynamics. Lecture Notes in Physics, Vol. 35, Springer, Berlin 1975.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Horizons Publishing Inc., Long Beach, California

About this chapter

Cite this chapter

Cebeci, T., Platzer, M., Chen, H., Chang, KC., Shao, J.P. (2005). Navier-Stokes Methods. In: Analysis of Low-Speed Unsteady Airfoil Flows. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27361-1_8

Download citation

  • DOI: https://doi.org/10.1007/3-540-27361-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22932-2

  • Online ISBN: 978-3-540-27361-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics