Skip to main content

Systems Approach: the Nature of Coupled Models

  • Chapter
  • 716 Accesses

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson BDO, Moore JB (1979) Optimal filtering. Prentice Hall, Englewood Clifts, New Jersey, p357

    Google Scholar 

  • Anderson MP, Woessner WW (1991) Applied groundwater modelling. Academic Press, San Diego, p381

    Google Scholar 

  • Andreae MO, Artaxo P, Brandao C, Carswell FE, Ciccioli P, da Costa AL, Culf AD, Esteves JL, Gash JHC, Grace J, Kabat P, Lelieveld J, Malhi Y, Manzi AO, Meixner FX, Nobre AD, Nobre C, Ruivo MDLP, Silva-Dias MA, Stefani P, Valentini R, von Jouanne J, Waterloo MJ (2002) Biogeochemical cycling of carbon, water, energy, trace gases, and aerosols in Amazonia: The LBA-EUSTACH experiments. J Geophys Res Special Issue LBA, 107(D20): Art. No. 8066

    Google Scholar 

  • Argyros IK, Szidarovszky F (1993) The theory and applications of iteration methods. CRC Press, Boca Raton, London

    Google Scholar 

  • Avissar R, Liu Y (1996) Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J Geophys Res 101:7499–7518

    Article  Google Scholar 

  • Bakr AAM, Gelhar LW, Gutjahr AL, McMillan JR (1978) Stochastic anaylysis of spatial variability in subsurface flow: Comparison of one-and three-dimensional flows. Water Resour Res 14:262–271

    Google Scholar 

  • Basson MS, Allen RB, Pegram GGS, van Rooyen JA (1994) Probabilistic management of water resources and hydropower systems. Water Resources Publications, Highlands Ranch, Colorado, p434

    Google Scholar 

  • Bastidas LA, Sorooshian S, Gupta HV (2002) Emerging paradigms in the calibration of hydrologic models. In: Singh VP, Frevert D (eds) Mathematical models of large watershed hydrology. Water Resources Publications, LLC, Highlands Ranch, Colorado, Vol I, pp25–56

    Google Scholar 

  • Beven K (1993) Prophecy, reality and uncertainty in distributed hydrological modelling. Adv Water Resour 16(1):41–51

    Article  Google Scholar 

  • Blackie JR, Eeles CWO (1985) Lumped catchment models. In: Anderson MG, Burt TP (eds) Hydrological forecasting. Wiley, Chichester, pp311–345

    Google Scholar 

  • Blaikie P, Cannon T, Davis I, Wisner B (1994) At risk: Natural hazards, people’s vulnerability and disasters. Routledge, London

    Google Scholar 

  • Blöschl G, Sivapalan M (1995) Scale issues in hydrological modelling-a review. Hydrol Process 9:251–290

    Google Scholar 

  • Brandt A, Fernando HJS (eds) (1995) Double-diffusive convection. Am Geophys Union, Geophys. Monograph 94, p334

    Google Scholar 

  • Bronstert A, Bärdossy A (1999) The role of spatial variability of soil moisture for modelling surface runoff generation at the small catchment scale. Hydrol Earth Syst Sci 3(4):505–516

    Google Scholar 

  • Carrera J (1987) State of the art of the inverse problem applied to the flow and solute transport equations. In: Custodio E, Gurgui A, Lobo Ferreira JP (eds) Analytical and numerical groundwater flow and quality modelling. NATO-ARW Ser. C: Mathematical and Physical Sciences, D. Reidel, Norwell, Mass, Vol 224, pp549–583

    Google Scholar 

  • Carrera J, Neuman SP (1986a) Estimation of aquifer parameters under transient and steady state conditions. Part 1: Maximum likelihood method incorporating prior information. Water Resour Res 22(2):199–210

    Google Scholar 

  • Carrera J, Neuman SP (1986b) Estimation of aquifer parameters under transient and steady stated conditions. Part 3: Application to synthetic and field data. Water Resour Res 22(2):228–242

    Google Scholar 

  • Carrera J, Mousavi SF, Usunoff E, Sanchez-Vila X, Galarza G (1993) A discussion on validation of hydrogeological models. Reliability Engineering and System Safety 42:201–216

    Article  Google Scholar 

  • Chartrand G (1977) Introductory graph theory. Dover Publ, NY, p294

    Google Scholar 

  • Culf AD, Fisch G, Hodnett MG (1995) The albedo of Amazonian forest and rangeland. J Climate 8:1544–1554

    Article  Google Scholar 

  • Culf AD, Esteves JL, Marques Filho A de, da Rocha OHR (1996) Radiation, temperature and humidity over forest and pasture in Amazonia. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. John Wiley, Chichester, pp175–191

    Google Scholar 

  • Cutrim E, Martin DW, Rabin R (1995) Enhancement of cumulus clouds over deforested lands in Amazonia. B Am Meteorol Soc 76:1801–1805

    Article  Google Scholar 

  • Dagan G (1982) Stochastic modeling of groundwater flow by unconditional and conditional probabilities. Part 2. The solute transport. Water Resour Res 18(4):835–848

    Google Scholar 

  • Dagan G (1984) Solute transport in heterogeneous porous formations. J Fluid Mech 145:151–177

    Google Scholar 

  • Dagan G (1988) Time-dependent macrodispersion for solute transport in anisotropic heterogeneous aquifers. Water Resour Res 24:1491–1500

    Google Scholar 

  • Dagan G (1989) Flow and transport in porous formations. Springer, New York, NY, p465

    Google Scholar 

  • Dickinson RE, Kennedy P (1992) Impact on regional climate of Amazon deforestation. Geophys Res Lett 19:1947–1950

    Google Scholar 

  • Dooge JCI (1973) Linear theory of hydrologic systems. U.S. Department of Agriculture, Technical Bulletin No. 1468, Washington, D.C., p327

    Google Scholar 

  • Dooge JCI (2003) Linear theory of hydrologic systems. EGU Reprint Series, 1, Katlenburg-Lindau

    Google Scholar 

  • Downing TE, Olsthoorn AJ, Tol RSJ (1999) Climate change and risk. Routledge, London

    Google Scholar 

  • Eagleson PS (1970) Dynamic hydrology. McGraw-Hill, New York

    Google Scholar 

  • Eagleson PS (2003) Dynamic hydrology. EGU Reprint Series, 2, Katlenburg-Lindau

    Google Scholar 

  • Edwards A (1972) Likelihood. Univ Press Cambridge, Mass

    Google Scholar 

  • Famiglietti JS, Wood EF (1994) Multiscale modeling of spatially variable water and energy balance processes. Water Resour Res 30:3061–3078

    Article  Google Scholar 

  • Fath BD, Patten BC (1999) Review of the foundations of network environ analysis. Ecosystems 2:167–179

    Article  Google Scholar 

  • Feddes RA, Kabat P, VanBakel PJT, Bronswijk JJB, Halbertsma J (1988) Modeling soil-water dynamics in the unsaturated zone — state of the art. J Hydrol 100(1–3):69–111

    Article  Google Scholar 

  • Freeze RA (1975) A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resour Res 11:725–741

    Google Scholar 

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice Hall, Englewood Cliffs, NJ, p604

    Google Scholar 

  • Garstang M, Ulanski S, Greco S, Scala J, Swap R, Fitzjarrald D, Browell E, Shipman M, Connors V, Harriss R, Talbot R (1990) The Amazon Boundary-Layer Experiment (ABLE 2B): A meteorological perspective. B Am Meteorol Soc 71:19–31

    Article  Google Scholar 

  • Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) (1996) Amazonian deforestation and climate. John Wiley, Chichester

    Google Scholar 

  • Gelhar LW (1976) Effects of hydraulic conductivity variations on groundwater flows. In: Hjorth P, Jönsson L, Larsen P (eds) Hydraulic problems solved by stochastic methods. Proc Second International Symposium on Stochastic Hydraulics, Lund, Sweden, Water Resources Publications, Fort Collins, CO, pp409–431

    Google Scholar 

  • Gelhar LW (1986) Stochastic subsurface hydrology from theory to applications. Water Resour Res 22(9):135S–145S

    Google Scholar 

  • Gelhar LW, Axness CL (1983) Three dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19:161–180

    Google Scholar 

  • Gelhar LW, Gutjahr AL, Naff RL (1979) Stochastic analysis of macro-dispersion in a stratified aquifer. Water Resour Res 15:1387–1397

    Google Scholar 

  • Guenni LB de, Schulze RE, Pielke RA Sr, Hutchinson MF (2004) The vulnerability approach. In: Kabat P, Claussen M, Dirmeyer PA, Gash JHC, Guenni LB de, Meybeck, M, Pielke RA Sr, Vörösmarty CJ, Hutjes RWA, Lütkemeier S (eds) (2004) Vegetation, water, humans and the climate: A new perspective on an interactive system. Springer-Verlag, Berlin, pp499–514

    Google Scholar 

  • Gupta RS (1989) Hydrology and hydraulic systems. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Gupta RS (2001) Hydrology and hydraulic systems. 2nd Edition, Waveland Press, Long Grove, IL, p867

    Google Scholar 

  • Gupta HV, Bastidas LA, Sorooshian S, Shuttleworth WJ, Yang ZL (1999) Parameter estimation of a land surface scheme using multicriteria methods. J Geophys Res Atmospheres 104(D16):19491–19503

    Article  Google Scholar 

  • Gutjahr AL, Gelhar LW, Bakr AA, McMillan JR (1978) Stochastic analysis of spatial variability in subsurface flow. Part 2: Evaluation and application. Water Resour Res 14(5):953–960

    Google Scholar 

  • Hahmann AN, Dickinson RE (1997) RCCM2-BATS model over tropical South America: Application to tropical deforestation. J Climate 10(8):1944–1964

    Article  Google Scholar 

  • Hill MC (1998) Methods and guidelines for effective model calibration. USGS Water Resources Investigations Report 98-4005, p97

    Google Scholar 

  • Holzbecher E (1998) Modeling density-driven flow in porous media. Springer Publ, New York, p286

    Google Scholar 

  • Holzbecher E (2003) What is a coupled model. In: Gnauk A, Heinrich R (eds) The information society and enlargement of the European Union. Proc. 17th Int. Conf. Informatics for Environm. Protection, Metropolis Verlag, Marburg, pp208–215

    Google Scholar 

  • Huyakorn P, Pinder G (1983) Computational methods in subsurface flow. Academic Press, San Diego, p473

    Google Scholar 

  • IGBP (1998) LBA is moving forward. Global Change Newsletter 33:1–9

    Google Scholar 

  • Imbe M, Nakano Y, Nakashima N, Nakamura S, Ogawada D (2000) An engineering approach towards appropriate hydrological water cycle in urban areas: First report. In: Sato K, Iwasa Y (eds) Groundwater updates. Springer Publ, Tokyo, pp313–318

    Google Scholar 

  • 8.htm

    Google Scholar 

  • Jarvis PG. (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. Phil Trans R Soc Lond B 273(927):593–610

    Google Scholar 

  • Kabat P, Claussen M, Dirmeyer PA, Gash JHC, Guenni LB de, Meybeck M, Pielke RA Sr, Vörösmarty CJ, Hutjes RWA, Lütkemeier S (eds) (2004) Vegetation, water, humans and the climate: A new perspective on an interactive system. Springer-Verlag, Berlin, p566

    Google Scholar 

  • Kashyap RLD (1982) Optimal choice of AR and MA parts in autoregressive moving average models. IEEE Trans Pattern Anal Mach Intel (PAMI) 4(2):99–104

    Google Scholar 

  • Knopman DS, Voss CI (1989) Multiobjective sampling design for parameter-estimation and model discrimination in groundwater solute transport. Water Resourc Res 25(10):2245–2258

    Google Scholar 

  • Lambert JD (1991) Numerical methods for ordinary differential systems. Wiley, Chichester, p293

    Google Scholar 

  • Lapwood ER (1948) Convection of a fluid in a porous medium. Proc Camb Phil Soc A 225:508–521

    Google Scholar 

  • Larsson A (1992) The international projects INTRACOIN, HYDROCOIN and INTRAVAL. Adv Water Resourc 15:85–87

    Article  Google Scholar 

  • Lean J, Rowntree P (1993) A GCM simulation of the impact of Amazonian deforestation on climate using an improved canopy representation. Q J Roy Meteor Soc 119:509–530

    Article  Google Scholar 

  • Lean J, Rowntree P (1997) Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J Climate 10:1216–1235

    Article  Google Scholar 

  • Loucks DP, Stedinger JR, Haith DA (1981) Water resource systems planning and analysis. Prentice-Hall, Englewood Cliffs, New Jersey

    Google Scholar 

  • Manzi AO, Planton S (1996) Calibration of a GCM using ABRACOS and ARME data and simulation of Amazonian deforestation. In: Gash JHC, Nobre CA, Roberts JM, and Victoria RL (eds) Amazonian deforestation and climate. John Wiley, Chichester, pp505–529

    Google Scholar 

  • Matheron G (1971) The theory of regionalized variables and its applications. Les Cahiers du CMM, Fasc. No 5, ENSMP, Paris, p211

    Google Scholar 

  • Matheron G, de Marsily G (1980) Is transport in porous media always diffusive? — A counterexample. Water Resour Res 16:901–917

    Google Scholar 

  • Mölders N (2000) Similarity of microclimate as simulated over a landscape of the 1930s and the 1980s. J Hydrometeorol 1:330–352

    Article  Google Scholar 

  • Mölders N, Raabe A, Tetzlaff G (1996) A comparison of two strategies on land surface heterogeneity used in a mesoscale-β meteorological model. Tellus A 48:733–749

    Article  Google Scholar 

  • Nepstad DC, Carvalho CR, Davidson EA, Jipp PH, Lefebvre PA, Negrelros GH, da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazon forests and pastures. Nature 372:666–669

    Article  Google Scholar 

  • Neuman SP (1973) Calibration of distributed parameter groundwater flow models viewed as multiple objective decision process under uncertainty. Water Resour Res 9(4):1006–1021

    Google Scholar 

  • Neuman SP (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media. Water Resour Res 26(8):1749–1758

    Article  Google Scholar 

  • Neuman SP, Yakowitz S (1979) A statistical approach to the inverse problem of aquifer hydrology. Part 1: Theory. Water Resour Res 15(4):845–860

    Google Scholar 

  • Neuman SP, Zhang YK (1990) A quasi-linear theory of non-fickian and fickian subsurface dispersion. Part 1: Theoretical-analysis with application to isotropic media. Water Resour Res 26(5):887–902

    Article  Google Scholar 

  • Neuman SP, Winter CL, Newman CM (1987) Stochastic theory of field-scale fickian dispersion in anisotropic porous-media. Water Resour Res 23(3):453–466

    Google Scholar 

  • Nield DA, Bejan A (1992) Convection in porous media. Springer Publ, New York, p408

    Google Scholar 

  • Nobre C, Sellers P, Shukla J (1991) Amazoman deforestation and the regional climate change. J Climate 4:957–988

    Article  Google Scholar 

  • Nobre CA, Fisch G, da Rocha HR, Lyra RF, da Rocha EP and Ubarana V N (1996) Observations of the atmospheric boundary layer in Rondönia. In: Gash JHC, Nobre CA, Roberts JM, Victoria RL (eds) Amazonian deforestation and climate. John Wiley, Chichester, pp413–424

    Google Scholar 

  • Patten BC, Higashi M, Burns TP (1990) Trophic dynamics in ecosystem networks: Significance of cycles and storage. Ecol Model 51:1–28

    Article  Google Scholar 

  • Petoukhov V, Ganopolski A, Brovkin V, Claussen M, Eliseev A, Kubatzki S, Rahmstorf S (2000) CLIMBER-2: A climate system model of intermediate complexity. Part I. Clim Dyn 16:1–17

    Google Scholar 

  • Pielke R, Carbone RE (2002) Weather impacts, forecasts, and policy — An integrated perspective. B Am Meteorol Soc 83(3):393–403

    Article  Google Scholar 

  • Pinder, GF, Gray WG (1977) Finite element simulation in surface an subsurface Hydrology. Academic Press, New York, p295

    Google Scholar 

  • Polcher J (1995) Sensitivity of tropical convection to land surface processes. J Atmos Sei 52(17):3143–3161

    Article  Google Scholar 

  • Polcher J, Laval K (1994a) The impact of African and Amazonian deforestation on tropical climate. J Hydrol 155:389–405

    Article  Google Scholar 

  • Polcher J, Laval K (1994b) A statistical study of regional impact of deforestation on climate of the LMD-GCM. Clim Dyn 10:205–219

    Article  Google Scholar 

  • Ralston A, Rabinowitz P (1978) A first course in numerical analysis. 2nd Edition, McGraw-Hill, p556

    Google Scholar 

  • Rayleigh Lord (1916) On convection currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil Mag XXXII:529–546

    Google Scholar 

  • Reilly TE, Goodman AS (1985) Quantitative analysis of saltwater-freshwater relationships in groundwater systems — a historical perspective. J Hydrol 80:125–160

    Article  Google Scholar 

  • Rickenbach TM, Ferreira RN, Halverson JB, Herdies DL, Dias MAFS (2002) Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J Geophys Res Special Issue LBA, 107(D20): Art. No. 8040

    Google Scholar 

  • Saaltink MW, Carrera J, Ayora C (2001) On the behavior of approaches to simulate reactive transport. J Contam Hydrol 48:213–235

    Article  PubMed  Google Scholar 

  • Sahuquillo A (1983) An eigenvalue numerical technique for solving unsteady linear groundwater models continuously in time. Water Resour Res 19(1):87–93

    Google Scholar 

  • Seigneur C (1993) Multimedia modeling. In: Zannetti P (ed) Environmental modeling I. Comp Mech Publ, Southampton and Elsevier Science, London, pp225–272

    Google Scholar 

  • Sellers PJ, Mintz Y, Sud YC, Dalcher A (1986) A simple biosphere atmosphere model (SiB) for use within general circulation models. J Atmos Sci 43:505–531

    Article  Google Scholar 

  • Seth A, Giorgi F, Dickinson RE (1994) Simulating fluxes from heterogeneous land surfaces: Explicit subgrid method employing the biosphere-atmosphere transfer scheme (BATS). J Geophys Res 99D:18651–18667

    Article  Google Scholar 

  • Shuttleworth W J (1988) Evaporation from Amazonian rainforests. Phil Trans R Soc Lond B 233:321–346

    Google Scholar 

  • Silva Dias MAF, Regnier P (1996) Simulation of mesoscale circulations in a deforested area of Rondonia in the dry season. In: Gash JHC, Nobre CA, Roberts J.M, Victoria R. (eds) Amazonian deforestation and climate. John Wiley, Chichester, pp531–547

    Google Scholar 

  • Silva Dias MAF, Nobre C, Marengo J (2001) The interaction of clouds and rain with the biosphere. Global Change Newsletter 45:8–11

    Google Scholar 

  • Silva Dias MAFS, Rutledge S, Kabat P, Dias PLS, Nobre C, Fisch G, Dolman AJ, Zipser E, Garstang M, Manzi AO, Fuentes JD, Rocha HR, Marengo J, Plana-Fattori A, Sa LDA, Alvala RCS, Andreae MO, Artaxo P, Gielow R, Gatti L (2002a) Cloud and rain processes in a biosphere-atmosphere interaction context in the Amazon region. J Geophys Res Special Issue LBA, 107(D20):Art. No. 8072

    Google Scholar 

  • Silva Dias MAFS, Petersen W, Dias PLS, Cifelli R, Betts AK, Longo M, Gomes AM, Fisch GF, Lima MA, Antonio MA, Albrecht RI (2002b) A case study of convective organization into precipitating lines in the Southwest Amazon during the WETAMC and TRMM-LBA. J Geophys Res Special Issue LBA 107(D20):Art. No. 8078

    Google Scholar 

  • Smith L, Schwartz FW (1980) Mass transport 1. A stochastic analysis of macroscopic dispersion. Water Resour Res 16:303–313

    Google Scholar 

  • Sorooshian S, Gupta VK (1995) Model calibration. In: Singh VP (ed) Computer models of watershed hydrology. Water Resources Publications, LLC, Highlands Ranch, Colorado, USA, pp23–63

    Google Scholar 

  • Sposito G, Jury WA, Gupta VK (1986) Fundamental problems in the stochastic convection-dispersion model of solute transport in aquifers and field soils. Water Resourc Res 22(1):77–88

    Google Scholar 

  • Subramanian S, Balakotaiah V (1997) Analysis and classification of reaction-driven stationary convective patterns in a porous medium. Phys Fluids 9(6)1674–1695

    Article  Google Scholar 

  • Tartakovsky DM, Neuman SP (1999) Extension of “Transient flow in bounded randomly heterogeneous domains, 1, Exact conditional moment equations and recursive approximations”. Water Resour Res 35(6):1921–1925

    Article  Google Scholar 

  • Usunoff E, Carrera J, Mousavi SF (1992) An approach to the design of experiments for discriminating among alternative conceptual models. Adv Water Resour 15(3):199–214

    Article  Google Scholar 

  • Vogel C (1998) Vulnerability and global environmental change. LUCC Newsletter 3:15–19

    Google Scholar 

  • Wang HF, Anderson MP (1982) Introduction to groundwater modelling. Freeman and Co., San Francisco, p237

    Google Scholar 

  • Ward RC, Robinson M (1990) Principles of hydrology. McGraw-Hill, London.

    Google Scholar 

  • Woolhiser DA, Smith RE, Giraldez. JV (1996) Effects of spatial variability of saturated hydraulic conductivity on Hortonian overland flow. Water Resour Res 32:671–678

    Article  Google Scholar 

  • Yeh WW-G (1986) Review of parameter identification procedures in groundwater hydrology: The inverse problem. Water Resour Res 22(2):95–108

    Google Scholar 

  • Zang H, Henderson-Sellers A, McGuffie K. (1996) Impacts of tropical deforestation. Part I: Process analysis of local climate change. J Climate 9:1497–1517

    Article  Google Scholar 

  • Zheng C, Bennet GD (2002) Applied contaminant transport modeling. 2nd Edition, John Wiley & Sons, New York

    Google Scholar 

Download references

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2005). Systems Approach: the Nature of Coupled Models. In: Bronstert, A., Carrera, J., Kabat, P., Lütkemeier, S. (eds) Coupled Models for the Hydrological Cycle. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27325-5_2

Download citation

Publish with us

Policies and ethics